toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Van Noyen, J.; Middelkoop, V.; Buysse, C.; Kovalevsky, A.; Snijkers, F.; Buekenhoudt, A.; Mullens, S.; Luyten, J.; Kretzschmar, J.; Lenaerts, S. pdf  doi
openurl 
  Title Fabrication of perovskite capillary membranes for high temperature gas separation Type A1 Journal article
  Year (down) 2012 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 193 Issue 1 Pages 172-178  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Oxygen-permeable perovskites with mixed ionic-electronic conducting properties can play an important role in carbon capture and storage techniques. Their ability to separate oxygen from air is needed, more specifically, in oxy-fuel and pre-combustion technologies. In this work, the first detailed comparative analysis and new results are reported on four types of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) capillary membranes: non-coated sulphur-containing; catalyst-coated sulphur-containing; non-coated sulphur-free and catalyst-coated sulphur-free. The fabrication of BSCF capillaries by a spinning technique based on phase inversion is further discussed and their oxygen separation performances are interpreted. The comparison of the performance of these different generations of BSCF capillaries of similar dimensions demonstrates a significant impact of the sulphur contamination on both the oxygen flux through the membrane and the activation energy of the overall oxygen transport mechanism. Careful attention is paid to the effect of activation layers on both sulphur-free and sulphur-containing types of capillaries. Additional long-term testing of the sulphur-free BSCF capillaries is presented, where partial decomposition of the membrane surface was observed due to kinetic demixing. (c) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308675900025 Publication Date 2012-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 9 Open Access  
  Notes ; The authors want to express their thanks to the VITO personnel for their continuous support, especially B. Molenberghs, W. Doyen (Separation and Conversion Technology, VITO), R. Kemps, M. Mertens, I. Thijs, M. Schoeters, W. Bouwen and J. Cooymans (Materials Department, VITO). C. Buysse thankfully acknowledges a Ph.D. scholarship provided by VITO and the University of Antwerp. This work is performed in the framework of the German Helmholtz Alliance Project “MEM-BRAIN”, aiming at the development of gas separation membranes for zero-emission fossil fuel power plants. ; Approved Most recent IF: 4.636; 2012 IF: 2.980  
  Call Number UA @ admin @ c:irua:101797 Serial 5951  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: