toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jishkariani, D.; Elbert, K.C.; Wu, Y.; Lee, J.D.; Hermes, M.; Wang, D.; van Blaaderen, A.; Murray, C.B. pdf  doi
openurl 
  Title Nanocrystal Core Size and Shape Substitutional Doping and Underlying Crystalline Order in Nanocrystal Superlattices Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 5 Pages 5712-5719  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Substitutional doping is a potentially powerful technique to control the properties of nanocrystal (NC) superlattices (SLs). However, not every NC can be substituted into any lattice, as the NCs have to be close in size and shape, limiting the application of substitutional doping. Here we show that this limitation can be overcome by employing ligands of various size. We show that small NCs with long ligands can be substituted into SLs of big NCs with short ligands. Furthermore, we show that shape differences can also be overcome and that cubes can substitute spheres when both are coated with long ligands. Finally, we use the NC effective ligand size, softness, and effective overall size ratio to explain observed doping behaviors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469886300078 Publication Date 2019-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 6 Open Access Not_Open_Access  
  Notes ; This work was supported by the University of Pennsylvania's NSF MRSEC under award no. DMR-112090 and the CNRS-UPENN-SOLVAY through the Complex Assemblies of Soft Matter Laboratory (COMPASS). K.C.E. acknowledges support from the NSF Graduate Research Fellowship Program under grant no. DGE-1321851. C.B.M. acknowledges the Richard Perry University Professorship at the University of Pennsylvania. D.W. and A.v.B. acknowledge partial funding from the European Research Council under the European Union's Seventh Framework Programme (FP -2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. M.H. was supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. The authors thank EM square in Utrecht University for the access to the microscopes. ; Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:160344 Serial 5256  
Permanent link to this record
 

 
Author Spreitzer, M.; Klement, D.; Egoavil, R.; Verbeeck, J.; Kovac, J.; Zaloznik, A.; Koster, G.; Van Tendeloo, G.; Suvorov, D.; Rijnders, G. url  doi
openurl 
  Title Growth mechanism of epitaxial SrTiO3 on a (1 x 2) + (2 x 1) reconstructed Sr(1/2 ML)/Si(001) surface Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry C Abbreviated Journal J Mater Chem C  
  Volume 8 Issue 2 Pages 518-527  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Sub-monolayer control over the growth at silicon-oxide interfaces is a prerequisite for epitaxial integration of complex oxides with the Si platform, enriching it with a variety of functionalities. However, the control over this integration is hindered by the intense reaction of the constituents. The most suitable buffer material for Si passivation is metallic strontium. When it is overgrown with a layer of SrTiO3 (STO) it can serve as a pseudo-substrate for the integration with functional oxides. In our study we determined a mechanism for epitaxial integration of STO with a (1 x 2) + (2 x 1) reconstructed Sr(1/2 ML)/Si(001) surface using all-pulsed laser deposition (PLD) technology. A detailed analysis of the initial deposition parameters was performed, which enabled us to develop a complete protocol for integration, taking into account the peculiarities of the PLD growth, STO critical thickness, and process thermal budget, in order to kinetically trap the reaction between STO and Si and thus to minimize the thickness of the interface layer. The as-prepared oxide layer exhibits STO(001)8Si(001) out-of-plane and STO[110]8Si[100] in-plane orientation and together with recent advances in large-scale PLD tools these results represent a new technological solution for the implementation of oxide electronics on demand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000506852400036 Publication Date 2019-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited 12 Open Access OpenAccess  
  Notes ; The research was financially supported by the Slovenian Research Agency (Project No. P2-0091, J2-9237) and Ministry of Education, Science and Sport of the Republic of Slovenia (SIOX projects). This work was also funded by the European Union Council under the 7th Framework Program grant no. NMP3-LA-2010-246102 IFOX. J. V. and G. V. T. acknowledge funding from the Fund for Scientific Research Flanders under project no. G.0044.13N. ; Approved Most recent IF: 6.4; 2020 IF: 5.256  
  Call Number UA @ admin @ c:irua:165672 Serial 6298  
Permanent link to this record
 

 
Author Ranieri, P.; Shrivastav, R.; Wang, M.; Lin, A.; Fridman, G.; Fridman, A.A.; Han, L.-H.; Miller, V. pdf  doi
openurl 
  Title Nanosecond-pulsed dielectric barrier dischargeinduced antitumor effects propagate through depth of tissue via intracellular signaling Type A1 Journal article
  Year 2017 Publication Plasma medicine Abbreviated Journal  
  Volume 7 Issue 3 Pages 283-297  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Studies using xenograft mouse models have shown that plasma applied to the skin overlying tumors results in tumor shrinkage. Plasma is considered a nonpenetrating treatment; however, these studies demonstrate plasma effects that occur beyond the postulated depth of physical penetration of plasma components. The present study examines the propagation of plasma effects through a tissue model using three-dimensional, cell-laden extracellular matrices (ECMs). These ECMs are used as barriers against direct plasma penetration. By placing them onto a monolayer of target cancer cells to create an in-vitro analog to in-vivo studies, we distinguished between cellular effects from direct plasma exposure and cellular effects due to cell-to-cell signaling stimulated by plasma. We show that nanosecond-pulsed dielectric barrier discharge plasma treatment applied atop an acellular barrier impedes the externalization of calreticulin (CRT) in the target cells. In contrast, when a barrier is populated with cells, CRT externalization is restored. Thus, we demonstrate that plasma components stimulate signaling among cells embedded in the barrier to transfer plasma effects to the target cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2017-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155658 Serial 8293  
Permanent link to this record
 

 
Author Dubrovinskaia, N.; Dubrovinsky, L.; Solopova, N.A.; Abakumov, A.; Turner, S.; Hanfland, M.; Bykova, E.; Bykov, M.; Prescher, C.; Prakapenka, V.B.; Petitgirard, S.; Chuvashova, I.; Gasharova, B.; Mathis, Y.-L.; Ershov, P.; Snigireva, I.; Snigirev, A. url  doi
openurl 
  Title Terapascal static pressure generation with ultrahigh yield strength nanodiamond Type A1 Journal article
  Year 2016 Publication Science Advances Abbreviated Journal  
  Volume 2 Issue 7 Pages e1600341-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (similar to 460 GPa at a confining pressure of similar to 70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381805300029 Publication Date 2016-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:190527 Serial 8647  
Permanent link to this record
 

 
Author Bliokh, K.Y.; Karimi, E.; Padgett, M.J.; Alonso, M.A.; Dennis, M.R.; Dudley, A.; Forbes, A.; Zahedpour, S.; Hancock, S.W.; Milchberg, H.M.; Rotter, S.; Nori, F.; Ozdemir, S.K.; Bender, N.; Cao, H.; Corkum, P.B.; Hernandez-Garcia, C.; Ren, H.; Kivshar, Y.; Silveirinha, M.G.; Engheta, N.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Leykam, D.; Smirnova, D.A.; Rong, K.; Wang, B.; Hasman, E.; Picardi, M.F.; Zayats, A.V.; Rodriguez-Fortuno, F.J.; Yang, C.; Ren, J.; Khanikaev, A.B.; Alu, A.; Brasselet, E.; Shats, M.; Verbeeck, J.; Schattschneider, P.; Sarenac, D.; Cory, D.G.; Pushin, D.A.; Birk, M.; Gorlach, A.; Kaminer, I.; Cardano, F.; Marrucci, L.; Krenn, M.; Marquardt, F. pdf  doi
openurl 
  Title Roadmap on structured waves Type A1 Journal article
  Year 2023 Publication Journal of optics Abbreviated Journal  
  Volume 25 Issue 10 Pages 103001-103079  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Structured waves are ubiquitous for all areas of wave physics, both classical and quantum, where the wavefields are inhomogeneous and cannot be approximated by a single plane wave. Even the interference of two plane waves, or of a single inhomogeneous (evanescent) wave, provides a number of nontrivial phenomena and additional functionalities as compared to a single plane wave. Complex wavefields with inhomogeneities in the amplitude, phase, and polarization, including topological----- structures and singularities, underpin modern nanooptics and photonics, yet they are equally important, e.g. for quantum matter waves, acoustics, water waves, etc. Structured waves are crucial in optical and electron microscopy, wave propagation and scattering, imaging, communications, quantum optics, topological and non-Hermitian wave systems, quantum condensed-matter systems, optomechanics, plasmonics and metamaterials, optical and acoustic manipulation, and so forth. This Roadmap is written collectively by prominent researchers and aims to survey the role of structured waves in various areas of wave physics. Providing background, current research, and anticipating future developments, it will be of interest to a wide cross-disciplinary audience.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001061350200001 Publication Date 2023-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-8978 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.1 Times cited 7 Open Access Not_Open_Access: Available from 30.03.2024  
  Notes This work is funded by the Royal Society and EPSRC under the Grant Number EP/M01326X/1.M A A acknowledges funding from the Excellence Initiative of Aix Marseille University-A*MIDEX, a French Investissements d'Avenir' programme, and from the Agence Nationale de Recherche (ANR) through project ANR-21-CE24-0014-01.M R D acknowledges support from the EPSRC Centre for Doctoral Training in Topological Design(EP/S02297X/1).S R acknowledges support by the Austrian Science Fund (FWF, Grant P32300 WAVELAND) and by the European Commission (Grant MSCA-RISE 691209 NHQWAVE). FN is supported in part by NTT Research, and S K OE by the Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) Award No. FA9550-21-1-0202.The authors thank their co-workers Yaron Bromberg, Hasan Yilmaz, and collaborators Joerg Bewersdorf and Mengyuan Sun for their contributions to the works presented here. They also acknowledge financial support from the Office of Naval Research (N00014-20-1-2197) and the National Science Foundation (DMR-1905465).H R acknowledges a support from the Australian Research Council DECRA Fellowship DE220101085. Y K acknowledges a support from the Australian Research Council (Grant DP210101292).M G S acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, from the Institution of Engineering and Technology (IET) under the A F Harvey Research Prize 2018, and from Instituto de Telecomunicacoes under project UIDB/50008/2020. N E acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, and from the US Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) grant number FA9550-21-1-0312.We acknowledge funding by the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship endowed by the Federal Ministry of Education and Research. Moreover, financial support from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 899275 (DAALI) is gratefully acknowledged.D L acknowledges a support from the National Research Foundation, Singapore and A*STAR under its CQT Bridging Grant. D A S acknowledges support from the Australian Research Council (FT230100058).The authors gratefully acknowledge financial support from the Israel Science Foundation (ISF), the U.S. Air Force Office of Scientific Research (FA9550-18-1-0208) through their program on Photonic Metamaterials, the Israel Ministry of Science, Technology and Space. The fabrication was performed at the Micro-Nano Fabrication & Printing Unit(MNF & PU), Technion.This work was supported by the European Research Council projects iCOMM (789340) and Starting Grant ERC-2016-STG-714151-PSINFONI.Our work in this area has been funded by the National Science Foundation, the Office of Naval Research, and the Simons Foundation.This work was supported by the Australian Research Council Discovery Project DP190100406.J V acknowledges funding from the eBEAM Project supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 101017720 (FET-Proactive EBEAM), FWO Project G042820N Exploring adaptive optics in transmission electron microscopy' and European Union's Horizon 2020 Research Infrastructure-Integrating Activities for Advanced Communities Grant Agreement No. 823717-ESTEEM3. P S acknowledges the support of the Austrian Science Fund under Project Nr. P29687-N36.; The authors would like to thank their many collaborators including Wangchun Chen, Charles W Clark, Lisa DeBeer-Schmitt, Huseyin Ekinci, Melissa Henderson, Michael Huber, Connor Kapahi, Ivar Taminiau, and Kirill Zhernenkov. The authors would also like to acknowledge their funding sources: the Canadian Excellence Research Chairs (CERC) program, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada First Research Excellence Fund (CFREF).E K acknowledges the support of Canada Research Chairs, Ontario's Early Research Award, and NRC-uOttawa Joint Centre for Extreme Quantum Photonics (JCEP) via the High Throughput and Secure Networks Challenge Program at the National Research Council of Canada. Approved Most recent IF: 2.1; 2023 IF: 1.741  
  Call Number UA @ admin @ c:irua:199327 Serial 8925  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Rivera-Julio, J.; Peeters, F.M.; Mendoza-Estrada, V.; Gonzalez-Hernandez, R. pdf  doi
openurl 
  Title Structural, mechanical and electronic properties of two-dimensional structure of III-arsenide (111) binary compounds: An ab-initio study Type A1 Journal article
  Year 2018 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 144 Issue 144 Pages 285-293  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Structural, mechanical and electronic properties of two-dimensional single-layer hexagonal structures in the (111) crystal plane of IIIAs-ZnS systems (III = B, Ga and In) are studied by first-principles calculations based on density functional theory (DFT). Elastic and phonon dispersion relation display that 2D h-IIIAs systems (III = B, Ga and In) are both mechanical and dynamically stable. Electronic structures analysis show that the semiconducting nature of the 3D-IIIAs compounds is retained by their 2D single layer counterpart. Furthermore, density of states reveals the influence of sigma and pi bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Calculations of elastic constants show that the Young's modulus, bulk modulus and shear modulus decrease for 2D h-IIIAs binary compounds as we move down on the group of elements of the periodic table. In addition, as the bond length between the neighboring cation-anion atoms increases, the 2D h-IIIAs binary compounds display less stiffness and more plasticity. Our findings can be used to understand the contribution of the r and p bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Structural and electronic properties of h-IIIAs systems as a function of the number of layers have been also studied. It is shown that h-BAs keeps its planar geometry while both h-GAs and h-InAs retained their buckled ones obtained by their single layers. Bilayer h-IIIAs present the same bandgap nature of their counterpart in 3D. As the number of layers increase from 2 to 4, the bandgap width for layered h-IIIAs decreases until they become semimetal or metal. Interestingly, these results are different to those found for layered h-GaN. The results presented in this study for single and few-layer h-IIIAs structures could give some physical insights for further theoretical and experimental studies of 2D h-IIIV-like systems. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424902300036 Publication Date 2017-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 3 Open Access  
  Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712 – Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.292  
  Call Number UA @ lucian @ c:irua:149897UA @ admin @ c:irua:149897 Serial 4949  
Permanent link to this record
 

 
Author Bafekry, A.; Shahrokhi, M.; Yagmurcukardes, M.; Gogova, D.; Ghergherehchi, M.; Akgenc, B.; Feghhi, S.A.H. pdf  url
doi  openurl
  Title Surface functionalization of the honeycomb structure of zinc antimonide (ZnSb) monolayer : a first-principles study Type A1 Journal article
  Year 2021 Publication Surface Science Abbreviated Journal Surf Sci  
  Volume 707 Issue Pages 121796  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Structural, electronic, optic and vibrational properties of Zinc antimonide (ZnSb) monolayers and their func-tionalized (semi-fluorinated and fully chlorinated) structures are investigated by means of the first-principles calculations. The phonon dispersion curves reveal the presence of imaginary frequencies and thus confirm the dynamical instability of ZnSb monolayer. The calculated electronic band structure corroborates the metallic character with fully-relativistic calculations. Moreover, we analyze the surface functionalization effect on the structural, vibrational, and electronic properties of the pristine ZnSb monolayer. The semi-fluorinated and fully-chlorinated ZnSb monolayers are shown to be dynamically stable in contrast to the ZnSb monolayer. At the same time, semi-fluorination and fully-chlorination of ZnSb monolayer could effectively modulate the metallic elec-tronic properties of pristine ZnSb. In addition, a magnetic metal to a nonmagnetic semiconductor transition with a band gap of 1 eV is achieved via fluorination, whereas a transition to a semiconducting state with 1.4 eV band gap is found via chlorination of the ZnSb monolayer. According to the optical properties analysis, the first ab-sorption peaks of the fluorinated-and chlorinated-ZnSb monolayers along the in-plane polarization are placed in the infrared range of spectrum, while they are in the middle ultraviolet for the out-of-plane polarization. Interestingly, the optically anisotropic behavior of these novel monolayers along the in-plane polarizations is highly desirable for design of polarization-sensitive photodetectors. The results of the calculations clearly proved that the tunable electronic properties of the ZnSb monolayer can be realized by chemical functionalization for application in the next generation nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626633500001 Publication Date 2020-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.062 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.062  
  Call Number UA @ admin @ c:irua:177623 Serial 7026  
Permanent link to this record
 

 
Author Varjovi, M.J.; Yagmurcukardes, M.; Peeters, F.M.; Durgun, E. doi  openurl
  Title Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X = S, Se, and Te Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 19 Pages 195438  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Structural symmetry breaking in two-dimensional materials can lead to superior physical properties and introduce an additional degree of piezoelectricity. In the present paper, we propose three structural phases (1H, 1T, and 1T') of Janus WXO (X = S, Se, and Te) monolayers and investigate their vibrational, thermal, elastic, piezoelectric, and electronic properties by using first-principles methods. Phonon spectra analysis reveals that while the 1H phase is dynamically stable, the 1T phase exhibits imaginary frequencies and transforms to the distorted 1T' phase. Ab initio molecular dynamics simulations confirm that 1H- and 1T'-WXO monolayers are thermally stable even at high temperatures without any significant structural deformations. Different from binary systems, additional Raman active modes appear upon the formation of Janus monolayers. Although the mechanical properties of 1H-WXO are found to be isotropic, they are orientation dependent for 1T'-WXO. It is also shown that 1H-WXO monolayers are indirect band-gap semiconductors and the band gap narrows down the chalcogen group. Except 1T'-WSO, 1T'-WXO monolayers have a narrow band gap correlated with the Peierls distortion. The effect of spin-orbit coupling on the band structure is also examined for both phases and the alteration in the band gap is estimated. The versatile mechanical and electronic properties of Janus WXO monolayers together with their large piezoelectric response imply that these systems are interesting for several nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655902600004 Publication Date 2021-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 78 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:179050 Serial 7000  
Permanent link to this record
 

 
Author Galván Moya, J.E.; Nelissen, K.; Peeters, F.M. pdf  doi
openurl 
  Title Structural transitions in vertically and horizontally coupled parabolic channels of Wigner crystals Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 18 Pages 184102-184109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Structural phase transitions in two vertically or horizontally coupled channels of strongly interacting particles are investigated. The particles are free to move in the x direction but are confined by a parabolic potential in the y direction. They interact with each other through a screened power-law potential (r(-n)e(-r/lambda)). In vertically coupled systems, the channels are stacked above each other in the direction perpendicular to the (x, y) plane, while in horizontally coupled systems both channels are aligned in the confinement direction. Using Monte Carlo (MC) simulations we obtain the ground-state configurations and the structural transitions as a function of the linear particle density and the separation between the channels. At zero temperature, the vertically coupled system exhibits a rich phase diagram with continuous and discontinuous transitions. On the other hand, the horizontally coupled system exhibits only a very limited number of phase transitions due to its symmetry. Further, we calculated the normal modes for the Wigner crystals in both cases. From MC simulations, we found that in the case of vertically coupled systems, the zigzag transition is only possible for low densities. A Ginzburg-Landau theory for the zigzag transition is presented, which predicts correctly the behavior of this transition from which we interpret the structural phase transition of the Wigner crystal through the reduction of the Brillouin zone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310683600002 Publication Date 2012-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:105150 Serial 3271  
Permanent link to this record
 

 
Author Verbist, K.; Lebedev, O.I.; Van Tendeloo, G.; Verhoeven, M.A.J.; Rijnders, A.J.H.M.; Blank, D.H.A. pdf  openurl
  Title Study of ramp-type Josephson junctions by HREM Type A1 Journal article
  Year 1997 Publication Electronic Applications; Vol 2: Large Scale And Power Applications Abbreviated Journal  
  Volume Issue 158 Pages 49-52  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Structural aspects of ramp-type Josephson junctions based on REBa2Cu3O7-delta high-T-c superconductors, are investigated by cross-section transmission electron microscopy and results related to fabrication process or physical properties. The barrier layer material is PrBa2Cu3-xGaxO7-delta. The ramp-geometry depends on the etching conditions. High levels of Ga doping (x>0.7) influence the microstructure of the barrier layer thereby changing the junctions properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000071955200012 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0-7503-0487-1 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:102941 Serial 3333  
Permanent link to this record
 

 
Author Rezvani, S.J.; Perali, A.; Fretto, M.; De Leo, N.; Flammia, L.; Milošević, M.; Nannarone, S.; Pinto, N. url  doi
openurl 
  Title Substrate-induced proximity effect in superconducting niobium nanofilms Type A1 Journal article
  Year 2018 Publication Condensed Matter Abbreviated Journal  
  Volume 4 Issue 1 Pages 4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Structural and superconducting properties of high-quality niobium nanofilms with different thicknesses are investigated on silicon oxide (SiO2) and sapphire substrates. The role played by the different substrates and the superconducting properties of the Nb films are discussed based on the defectivity of the films and on the presence of an interfacial oxide layer between the Nb film and the substrate. The X-ray absorption spectroscopy is employed to uncover the structure of the interfacial layer. We show that this interfacial layer leads to a strong proximity effect, especially in films deposited on a SiO2 substrate, altering the superconducting properties of the Nb films. Our results establish that the critical temperature is determined by an interplay between quantum-size effects, due to the reduction of the Nb film thicknesses, and proximity effects. The detailed investigation here provides reference characterizations and has direct and important implications for the fabrication of superconducting devices based on Nb nanofilms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464289300001 Publication Date 2018-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes ; This project was financially supported by University of Camerino, FAR project CESEMN. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:159463 Serial 5233  
Permanent link to this record
 

 
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N. url  doi
openurl 
  Title Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 3 Pages 035302-35310  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001074455300012 Publication Date 2023-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:200348 Serial 9089  
Permanent link to this record
 

 
Author Fatermans, J.; Romolini, G.; Altantzis, T.; Hofkens, J.; Roeffaers, M.B.J.; Bals, S.; Van Aert, S. url  doi
openurl 
  Title Atomic-scale detection of individual lead clusters confined in Linde Type A zeolites Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract (down) Structural analysis of metal clusters confined in nanoporous materials is typically performed by X-ray-driven techniques. Although X-ray analysis has proved its strength in the characterization of metal clusters, it provides averaged structural information. Therefore, we here present an alternative workflow for bringing the characterization of confined metal clusters towards the local scale. This workflow is based on the combination of aberration-corrected transmission electron microscopy (TEM), TEM image simulations, and powder X-ray diffraction (XRD) with advanced statistical techniques. In this manner, we were able to characterize the clustering of Pb atoms in Linde Type A (LTA) zeolites with Pb loadings as low as 5 wt%. Moreover, individual Pb clusters could be directly detected. The proposed methodology thus enables a local-scale characterization of confined metal clusters in zeolites. This is important for further elucidation of the connection between the structure and the physicochemical properties of such systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000809619900001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 2 Open Access OpenAccess  
  Notes The authors acknowledge the Research Foundation Flanders through project fundings (FWO, G026718N, G050218N, ZW15_09-G0H6316N, and W002221N) and through a PhD scholarship to G.R. (grant 11C6920N), as well as iBOF-21-085 PERSIST. T.A. and S.V.A. acknowledge funding from the University of Antwerp Research fund (BOF). J.H. acknowledges the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as MPI fellow. M.R. acknowledges funding by the KU Leuven Research Fund (C14/19/079). S.B. and S.V.A. acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128−REALNANO and No. 770887−PICOMETRICS). The authors thank Dr. D. Chernyshov for the collection of XRD measurements. Approved Most recent IF: 6.7  
  Call Number EMAT @ emat @c:irua:189061 Serial 7076  
Permanent link to this record
 

 
Author Cantoro, M.; Klekachev, A.V.; Nourbakhsh, A.; Sorée, B.; Heyns, M.M.; de Gendt, S. doi  openurl
  Title Long-wavelength, confined optical phonons in InAs nanowires probed by Raman spectroscopy Type A1 Journal article
  Year 2011 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 79 Issue 4 Pages 423-428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Strongly confined nano-systems, such as one-dimensional nanowires, feature deviations in their structural, electronic and optical properties from the corresponding bulk. In this work, we investigate the behavior of long-wavelength, optical phonons in vertical arrays of InAs nanowires by Raman spectroscopy. We attribute the main changes in the spectral features to thermal anharmonicity, due to temperature effects, and rule out the contribution of quantum confinement and Fano resonances. We also observe the appearance of surface optical modes, whose details allow for a quantitative, independent estimation of the nanowire diameter. The results shed light onto the mechanisms of lineshape change in low-dimensional InAs nanostructures, and are useful to help tailoring their electronic and vibrational properties for novel functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000288120600005 Publication Date 2011-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 1.461; 2011 IF: 1.534  
  Call Number UA @ lucian @ c:irua:89502 Serial 1841  
Permanent link to this record
 

 
Author Zhang, G.; Turner, S.; Ekimov, E.A.; Vanacken, J.; Timmermans, M.; Samuely, T.; Sidorov, V.A.; Stishov, S.M.; Lu, Y.; Deloof, B.; Goderis, B.; Van Tendeloo, G.; Van de Vondel, J.; Moshchalkov, V.V.; pdf  doi
openurl 
  Title Global and local superconductivity in boron-doped granular diamond Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 13 Pages 2034-2040  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333616700008 Publication Date 2013-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 34 Open Access  
  Notes Methusalem Funding; FWO projects; MP1201 COST Action; ERC Grant N246791-COUNTATOMS; post-doctoral grant (S.T.) and for project no. G.0568.10N.;Hercules Foundation Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:116150 Serial 1346  
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M. url  doi
openurl 
  Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 13 Issue 1 Pages 5776-5777  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000862552600012 Publication Date 2022-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 14 Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:191575 Serial 7228  
Permanent link to this record
 

 
Author Milovanović, S.P.; Tadic, M.Z.; Peeters, F.M. doi  openurl
  Title Graphene membrane as a pressure gauge Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 111 Issue 4 Pages 043101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Straining graphene results in the appearance of a pseudo-magnetic field which alters its local electronic properties. Applying a pressure difference between the two sides of the membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000406779700035 Publication Date 2017-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 11 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem program, the Erasmus+ programme, and the Serbian Ministry of Education, Science and Technological Development. ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:145202 Serial 4718  
Permanent link to this record
 

 
Author Yan, Y.; Zhou, X.; Jin, H.; Li, C.-Z.; Ke, X.; Van Tendeloo, G.; Liu, K.; Yu, D.; Dressel, M.; Liao, Z.-M. url  doi
openurl 
  Title Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi2Se3 Nanoribbons Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 10244-10251  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the local strain effects in individual topological insulator nanostructures. Here, we report the systematical micro-Raman spectra of single strained Bi2Se3 nanoribbons with different thicknesses and different surface facets, where four optical modes are resolved in both Stokes and anti-Stokes Raman spectral lines. A striking anisotropy of the strain dependence is observed in the phonon frequency of strained Bi2Se3 nanoribbons grown along the ⟨112̅0⟩ direction. The frequencies of the in-plane Eg2 and out-of-plane A1g1 modes exhibit a nearly linear blue-shift against bending strain when the nanoribbon is bent along the ⟨112̅0⟩ direction with the curved {0001} surface. In this case, the phonon deformation potential of the Eg2 phonon for 100 nm-thick Bi2Se3 nanoribbon is up to 0.94 cm–1/%, which is twice of that in Bi2Se3 bulk material (0.52 cm–1/%). Our results may be valuable for the strain modulation of individual topological insulator nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000363915300079 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 14 Open Access  
  Notes Y.Y. would like to thank Xuewen Fu for helpful discussions. This work was supported by MOST (Nos. 2013CB934600, 2013CB932602) and NSFC (Nos. 11274014, 11234001). Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:129216 Serial 3963  
Permanent link to this record
 

 
Author Aierken, Y.; Çakir, D.; Peeters, F.M. pdf  doi
openurl 
  Title Strain enhancement of acoustic phonon limited mobility in monolayer TiS3 Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 14434-14441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Strain engineering is an effective way to tune the intrinsic properties of a material. Here, we show by using first-principles calculations that both uniaxial and biaxial tensile strain applied to monolayer TiS3 are able to significantly modify its intrinsic mobility. From the elastic modulus and the phonon dispersion relation we determine the tensile strain range where structure dynamical stability of the monolayer is guaranteed. Within this region, we find more than one order of enhancement of the acoustic phonon limited mobility at 300 K (100 K), i.e. from 1.71 x 10(4) (5.13 x 10(4)) cm(2) V-1 s(-1) to 5.53 x 10(6) (1.66 x 10(6)) cm(2) V-1 s(-1). The degree of anisotropy in both mobility and effective mass can be tuned by using tensile strain. Furthermore, we can either increase or decrease the band gap of TiS3 monolayer by applying strain along different crystal directions. This property allows us to use TiS3 not only in electronic but also in optical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000378102700036 Publication Date 2016-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 24 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-V1). Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:134628 Serial 4250  
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Barnes, J.-P.; Hartmann, J.-M.; Hutin, L.; Le Royer, C.; Béché, A.; Rouvière, J.-L. doi  openurl
  Title Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy Type A1 Journal article
  Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 112 Issue Pages 124505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000312829400128 Publication Date 2012-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:136433 Serial 4510  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G. pdf  url
doi  openurl
  Title Uniform strain in heterostructure tunnel field-effect transistors Type A1 Journal article
  Year 2016 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 37 Issue 37 Pages 337-340  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Strain can strongly impact the performance of III-V tunnel field-effect transistors (TFETs). However, previous studies on homostructure TFETs have found an increase in ON-current to be accompanied with a degradation of subthreshold swing. We perform 30-band quantum mechanical simulations of staggered heterostructure p-n-i-n TFETs submitted to uniaxial and biaxial uniform stress and find the origin of the subthreshold degradation to be a reduction of the density of states in the strained case. We apply an alternative configuration including a lowly doped pocket in the source, which allows to take full benefit of the strain-induced increase in ON-current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372372100026 Publication Date 2016-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 17 Open Access  
  Notes ; This work was supported by the imec Industrial Affiliation Program. The work of D. Verreck was supported by the Agency for Innovation by Science and Technology in Flanders. The review of this letter was arranged by Editor Z. Chen. ; Approved Most recent IF: 3.048  
  Call Number UA @ lucian @ c:irua:133207 Serial 4271  
Permanent link to this record
 

 
Author Grieb, T.; Krause, F.F.; Schowalter, M.; Zillmann, D.; Sellin, R.; Müller-Caspary, K.; Mahr, C.; Mehrtens, T.; Bimberg, D.; Rosenauer, A. pdf  url
doi  openurl
  Title Strain analysis from nano-beam electron diffraction : influence of specimen tilt and beam convergence Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 190 Issue 190 Pages 45-57  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Strain analyses from experimental series of nano-beam electron diffraction (NBED) patterns in scanning transmission electron microscopy are performed for different specimen tilts. Simulations of NBED series are presented for which strain analysis gives results that are in accordance with experiment. This consequently allows to study the relation between measured strain and actual underlying strain. A two-tilt method which can be seen as lowest-order electron beam precession is suggested and experimentally implemented. Strain determination from NBED series with increasing beam convergence is performed in combination with the experimental realization of a probe-forming aperture with a cross inside. It is shown that using standard evaluation techniques, the influence of beam convergence on spatial resolution is lower than the influence of sharp rings around the diffraction disc which occur at interfaces and which are caused by the tails of the intensity distribution of the electron probe. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000432868800006 Publication Date 2018-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access OpenAccess  
  Notes ; This work was supported by the German Research Foundation (DFG) under Contracts RO2057/11-1 and RO2057/12-1. ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:151454 Serial 5041  
Permanent link to this record
 

 
Author Zhang, J.; Ke, X.; Gou, G.; Seidel, J.; Xiang, B.; Yu, P.; Liang, W.I.; Minor, A.M.; Chu, Y.h.; Van Tendeloo, G.; Ren, X.; Ramesh, R.; pdf  doi
openurl 
  Title A nanoscale shape memory oxide Type A1 Journal article
  Year 2013 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 4 Issue Pages 2768-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm−3 can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328023900006 Publication Date 2013-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 67 Open Access  
  Notes Countatoms Approved Most recent IF: 12.124; 2013 IF: 10.742  
  Call Number UA @ lucian @ c:irua:111431 Serial 2271  
Permanent link to this record
 

 
Author Velazco, A.; Nord, M.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Evaluation of different rectangular scan strategies for STEM imaging Type A1 Journal article
  Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume Issue Pages 113021  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) STEM imaging is typically performed by raster scanning a focused electron probe over a sample. Here we investigate and compare three different scan patterns, making use of a programmable scan engine that allows to arbitrarily set the sequence of probe positions that are consecutively visited on the sample. We compare the typical raster scan with a so-called ‘snake’ pattern where the scan direction is reversed after each row and a novel Hilbert scan pattern that changes scan direction rapidly and provides an homogeneous treatment of both scan directions. We experimentally evaluate the imaging performance on a single crystal test sample by varying dwell time and evaluating behaviour with respect to sample drift. We demonstrate the ability of the Hilbert scan pattern to more faithfully represent the high frequency content of the image in the presence of sample drift. It is also shown that Hilbert scanning provides reduced bias when measuring lattice parameters from the obtained scanned images while maintaining similar precision in both scan directions which is especially important when e.g. performing strain analysis. Compared to raster scanning with flyback correction, both snake and Hilbert scanning benefit from dose reduction as only small probe movement steps occur.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000544042800007 Publication Date 2020-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 13 Open Access OpenAccess  
  Notes A.V., A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.N. received support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 838001. J.V acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. Approved Most recent IF: 2.2; 2020 IF: 2.843  
  Call Number EMAT @ emat @c:irua:169225 Serial 6369  
Permanent link to this record
 

 
Author Sliem, M.A.; Turner, S.; Heeskens, D.; Kalidindi, S.B.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A. pdf  doi
openurl 
  Title Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis Type A1 Journal article
  Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 14 Issue 22 Pages 8170-8178  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO ∶ Cu = 2 and 5 are synthesized by reduction of the metalorganic Cu precursor [Cu{(OCH(CH3)CH2N(CH3)2)}2] in the presence of stearate@ZnO nanoparticles. In the case of ZnO ∶ Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) as well as attenuated total reflection Fourier transform infrared (ATR-IR) spectroscopy are used to localize the small amount of Cu deposited on the surface of 35 nm sized stearate@ZnO particles. For ZnO ∶ Cu = 2, the microstructure of the nanocomposites after catalytic activity testing is characterized by HAADF-STEM techniques. This reveals the construction of large Cu nanoparticles (2050 nm) decorated by small ZnO nanoparticles (35 nm). The catalytic activity of both composites for the synthesis of methanol from syn gas is evaluated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000304102200033 Publication Date 2012-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 16 Open Access  
  Notes Fwo Approved Most recent IF: 4.123; 2012 IF: 3.829  
  Call Number UA @ lucian @ c:irua:98377 Serial 2702  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; de Romaguera, A.R.C.; Milošević, M.V.; Doria, M.M.; Covaci, L.; Peeters, F.M. pdf  doi
openurl 
  Title Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links Type A1 Journal article
  Year 2012 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 85 Issue 4 Pages 130-130,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Static and dynamic properties of superconducting vortices in a superconducting stripe with a periodic array of weakly-superconducting (or normal metal) regions are studied in the presence of external magnetic and electric fields. The time-dependent Ginzburg-Landau theory is used to describe the electronic transport, where the anisotropy is included through the spatially-dependent critical temperature T-c. Superconducting vortices penetrating into the weak-superconducting region with smaller T-c are more mobile than the ones in the strong superconducting regions. We observe periodic entrance and exit of vortices which reside in the weak link for some short interval. The mobility of the weakly-pinned vortices can be reduced by increasing the uniform applied magnetic field leading to distinct features in the voltage vs. magnetic field response of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000303545400013 Publication Date 2012-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 32 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral programme between Flanders and Brazil. G.R.B. and L.C. acknowledge individual support from FWO-Vl. A.R.de C.R. acknowledges CNPq and FACEPE for financial support. ; Approved Most recent IF: 1.461; 2012 IF: 1.282  
  Call Number UA @ lucian @ c:irua:98267 Serial 761  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Interlayer excitons in transition metal dichalcogenide heterostructures Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages 115104  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Starting from the single-particle Dirac Hamiltonian for charge carriers in monolayer transition metal dichalcogenides (TMDs), we construct a four-band Hamiltonian describing interlayer excitons consisting of an electron in one TMD layer and a hole in the other TMD layer. An expression for the electron-hole interaction potential is derived, taking into account the effect of the dielectric environment above, below, and between the two TMD layers as well as polarization effects in the transition metal layer and in the chalcogen layers of the TMD layers. We calculate the interlayer exciton binding energy and average in-plane interparticle distance for different TMD heterostructures. The effect of different dielectric environments on the exciton binding energy is investigated and a remarkable dependence on the dielectric constant of the barrier between the two layers is found, resulting from competing effects as a function of the in-plane and out-of-plane dielectric constants of the barrier. The polarization effects in the chalcogen layers, which in general reduce the exciton binding energy, can lead to an increase in binding energy in the presence of strong substrate effects by screening the substrate. The excitonic absorbance spectrum is calculated and we show that the interlayer exciton peak depends linearly on a perpendicular electric field, which agrees with recent experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443671900004 Publication Date 2018-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153653UA @ admin @ c:irua:153653 Serial 5110  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding model for borophene and borophane Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 12 Pages 125424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427983700004 Publication Date 2018-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 45 Open Access  
  Notes ; Discussions with Dr. Vahid Derakhshan and M. A. M. Keshtan are gratefully acknowledged. This paper is supported by the Methusalem program of the Flemish government and the FLAT-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150836UA @ admin @ c:irua:150836 Serial 4987  
Permanent link to this record
 

 
Author Hai, G.-Q.; Candido, L.; Brito, B.G.A.; Peeters, F.M. url  doi
openurl 
  Title Electron pairing: from metastable electron pair to bipolaron Type A1 Journal article
  Year 2018 Publication Journal of physics communications Abbreviated Journal  
  Volume 2 Issue 3 Pages Unsp 035017  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Starting from the shell structure in atoms and the significant correlation within electron pairs, we distinguish the exchange-correlation effects between two electrons of opposite spins occupying the same orbital from the average correlation among many electrons in a crystal. In the periodic potential of the crystal with lattice constant larger than the effective Bohr radius of the valence electrons, these correlated electron pairs can form a metastable energy band above the corresponding single-electron band separated by an energy gap. In order to determine if these metastable electron pairs can be stabilized, we calculate the many-electron exchange-correlation renormalization and the polaron correction to the two-band system with single electrons and electron pairs. We find that the electron-phonon interaction is essential to counterbalance the Coulomb repulsion and to stabilize the electron pairs. The interplay of the electron-electron and electron-phonon interactions, manifested in the exchange-correlation energies, polaron effects, and screening, is responsible for the formation of electron pairs (bipolarons) that are located on the Fermi surface of the single-electron band.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000434996900022 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-6528 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes ; This work was supported by the Brazilian agencies FAPESP and CNPq. GQH would like to thank Prof. Bangfen Zhu for his invaluable support and expert advice. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:152079UA @ admin @ c:irua:152079 Serial 5022  
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yuecelen, E.; Lievens, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic scale dynamics of ultrasmall germanium clusters Type A1 Journal article
  Year 2012 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 3 Issue 897 Pages 897  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (down) Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306099900024 Publication Date 2012-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 90 Open Access  
  Notes Fwo; Iap; Iwt Approved Most recent IF: 12.124; 2012 IF: 10.015  
  Call Number UA @ lucian @ c:irua:100340 Serial 183  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: