toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nikolaev, A.V.; Michel, K.H. url  doi
openurl 
  Title Microscopic theory of the rhombohedral phase and transition to the monoclinic phase of solid C70 Type A1 Journal article
  Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 54 Issue 18 Pages 12733-12743  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Starting from a model of microscopic interactions between C-70 molecules, we have developed a theory which describes the orientational dynamics and its coupling to lattice displacements in the rhombohedral phase of C-70 fullerite. The Landau free energy is calculated. We obtain a first-order phase transition to a monoclinic structure with the space group P2(1)/m. The transition is driven by the condensation of orientational quadrupoles at the F point of the Brillouin zone of the rhombohedral lattice. We find no evidence that the monoclinic structure is connected with the freezing in of orientations around the fivefold molecular axis. We calculate the lattice strains that are associated with the transition to the monoclinic structure. The theory is compared with a range of experimental data on the phase transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1996VT68200028 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 5 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:16357 Serial 2034  
Permanent link to this record
 

 
Author Verberck, B.; Michel, K.H.; Nikolaev, A.V. pdf  doi
openurl 
  Title Crystal structures of polymerized fullerides AC60, A=K, Rb, Cs, and alkali-mediated interactions Type A1 Journal article
  Year 2002 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 116 Issue 23 Pages 10462-10474  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Starting from a model of rigid interacting C-60 polymer chains on an orthorhombic lattice, we study the mutual orientation of the chains and the stability of the crystalline structures Pmnn and I2/m. We take into account (i) van der Waals interactions and electric quadrupole interactions between C-60 monomers on different chains as well as (ii) interactions of the monomers with the surrounding alkali atoms. The direct interactions (i) always lead to an antiferrorotational structure Pmnn with alternate orientation of the C-60 chains in planes (001). The interactions (ii) with the alkalis consist of two parts: translation-rotation (TR) coupling where the orientations of the chains interact with displacements of the alkalis, and quadrupolar electronic polarizability (ep) coupling, where the electric quadrupoles on the C-60 monomers interact with induced quadrupoles due to excited electronic d-states of the alkalis. Both interactions (ii) lead to an effective orientation-orientation interaction between the C-60 chains and always favor the ferrorotational structure I2/m, where C-60 chains have a same orientation. The structures Pmnn for KC60 and I2/m for Rb- and CsC60 are the result of a competition between the direct interaction (i) and the alkali-mediated interactions (ii). In Rb- and CsC60 the latter are found to be dominant, the preponderant role being played by the quadrupolar electronic polarizability of the alkali ions. (C) 2002 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000175905800044 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.965; 2002 IF: 2.998  
  Call Number UA @ lucian @ c:irua:103350 Serial 578  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. doi  openurl
  Title Theoretical phonon dispersions in monolayers and multilayers of hexagonal boron-nitride Type A1 Journal article
  Year 2009 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 246 Issue 11/12 Pages 2802-2805  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Starting from an empirical force constant model of valence interactions and calculating by Ewald's method the electrostatic force constants, we derive the dynamical matrix for a monolayer and for multilayer systems of hexagonal boron nitride (h-BN). Solution of the secular problem leads to the corresponding phonon dispersion relations. The interplay between valence forces and Coulomb forces is discussed. A comparison with previous results on graphene and graphene multilayers is made. Our spectra on the h-BN monolayer are rather similar to previous ab initio theory results. Comparison is also made with Raman and infrared experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000272904100091 Publication Date 2009-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.674; 2009 IF: 1.150  
  Call Number UA @ lucian @ c:irua:80673 Serial 3609  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 22 Pages 224301,1-224301,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Starting from an empirical force constant model of valence interactions and calculating by Ewalds method the ion-ion force constants, we derive the dynamical matrix for a monolayer crystal of hexagonal boron nitride (h-BN). The phonon dispersion relations are calculated. The interplay between valence and Coulomb forces is discussed. It is shown by analytical methods that the longitudinal and the transverse optical (LO and TO) phonon branches for in-plane motion are degenerate at the Γ point of the Brillouin zone. Away from Γ, the LO branch exhibits pronounced overbending. It is found that the nonanalytic Coulomb contribution to the dynamical matrix causes a linear increase of the LO branch with increasing wave vector starting at Γ. This effect is general for two-dimensional (2D) ionic crystals. Performing a long-wavelength expansion of the dynamical matrix, we use Borns perturbation method to calculate the elastic constants (tension coefficients). Since the crystal is noncentrosymmetric, internal displacements due to relative shifts between the two sublattices (B and N) contribute to the elastic constants. These internal displacements are responsible for piezoelectric and dielectric phenomena. The piezoelectric stress constant and the dielectric susceptibility of 2D h-BN are calculated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000273228500045 Publication Date 2009-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 96 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80576 Serial 3616  
Permanent link to this record
 

 
Author Sels, D.; Brosens, F.; Magnus, W. doi  openurl
  Title Wigner distribution functions for complex dynamical systems : a path integral approach Type A1 Journal article
  Year 2013 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A  
  Volume 392 Issue 2 Pages 326-335  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract (up) Starting from Feynmans Lagrangian description of quantum mechanics, we propose a method to construct explicitly the propagator for the Wigner distribution function of a single system. For general quadratic Lagrangians, only the classical phase space trajectory is found to contribute to the propagator. Inspired by Feynmans and Vernons influence functional theory we extend the method to calculate the propagator for the reduced Wigner function of a system of interest coupled to an external system. Explicit expressions are obtained when the external system consists of a set of independent harmonic oscillators. As an example we calculate the propagator for the reduced Wigner function associated with the CaldeiraLegett model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000311135200004 Publication Date 2012-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4371; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.243 Times cited 9 Open Access  
  Notes ; ; Approved Most recent IF: 2.243; 2013 IF: 1.722  
  Call Number UA @ lucian @ c:irua:101414 Serial 3921  
Permanent link to this record
 

 
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V. url  doi
openurl 
  Title Evolution of multigap superconductivity in the atomically thin limit : strain-enhanced three-gap superconductivity in monolayer MgB2 Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 9 Pages 094510  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Starting from first principles, we show the formation and evolution of superconducting gaps in MgB2 at its ultrathin limit. Atomically thin MgB2 is distinctly different from bulk MgB2 in that surface states become comparable in electronic density to the bulklike sigma and pi bands. Combining the ab initio electron-phonon coupling with the anisotropic Eliashberg equations, we showthat monolayer MgB2 develops three distinct superconducting gaps, on completely separate parts of the Fermi surface due to the emergent surface contribution. These gaps hybridize nontrivially with every extra monolayer added to the film owing to the opening of additional coupling channels. Furthermore, we reveal that the three-gap superconductivity in monolayer MgB2 is robust over the entire temperature range that stretches up to a considerably high critical temperature of 20 K. The latter can be boosted to >50K under biaxial tensile strain of similar to 4%, which is an enhancement that is stronger than in any other graphene-related superconductor known to date.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000410166800008 Publication Date 2017-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 56 Open Access  
  Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation-Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The first-principles calculations have been carried out on the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Centre (VSC), supported financially by the Hercules Foundation and the Flemish Government (EWI Department). Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145623 Serial 4741  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Giantomassi, M.; Rangel, T.; Goossens, E.; Rignanese, G.-M.; Gonze, X.; Peeters, F.M. url  doi
openurl 
  Title Convergence of quasiparticle band structures of Si and Ge nanowires in the GW approximation and the validity of scissor shifts Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 4 Pages 045306-045306,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Starting from fully converged density-functional theory calculations, the quasiparticle corrections are calculated for different sized Si and Ge nanowires using the GW approximation. The effectiveness of recently developed techniques in speeding up the convergence of the quasiparticle calculations is demonstrated. The complete quasiparticle band structures are also obtained using an interpolation technique based on maximallylocalized Wannier functions. From the quasiparticle results, we assess the correctness of the commonly applied scissor-shift correction. Dispersion changes are observed, which are also reflected in changes in the effective band masses calculated taking into account quasiparticle corrections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286771400004 Publication Date 2011-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; We are grateful to Yann Pouillon for valuable technical support with the build system of ABINIT, related to the WANNIER90 library. This work was supported by the Flemish Science Foundation (FWO-Vl) and by the Interuniversity Attraction Poles Program (P6/42)-Belgian State-Belgian Science Policy. X. G. and G.-M. R. acknowledge funding from the EU's 7th Framework Programme through the ETSF I3 e-Infrastructure project (Grant No. 211956), the Communaute francaise de Belgique through the Action de Recherche Concertee 07/12-003 “Nanosystemes hybrides metal-organiques,” and the Wallon Region Project No. 816849 “ European Theoretical Spectroscopy Facility” (WALL ETSF). M. G. acknowledges funding from the FRFC Project No. 2.4.589.09.F. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:86905 Serial 510  
Permanent link to this record
 

 
Author Scuracchio, P.; Michel, K.H.; Peeters, F.M. doi  openurl
  Title Phonon hydrodynamics, thermal conductivity, and second sound in two-dimensional crystals Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 14 Pages 144303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Starting from our previous work in which we obtained a system of coupled integrodifferential equations for acoustic sound waves and phonon density fluctuations in two-dimensional (2D) crystals, we derive here the corresponding hydrodynamic equations, and we study their consequences as a function of temperature and frequency. These phenomena encompass propagation and damping of acoustic sound waves, diffusive heat conduction, second sound, and Poiseuille heat flow, all of which are characterized by specific transport coefficients. We calculate these coefficients by means of correlation functions without using the concept of relaxation time. Numerical calculations are performed as well in order to show the temperature dependence of the transport coefficients and of the thermal conductivity. As a consequence of thermal tension, mechanical and thermal phenomena are coupled. We calculate the dynamic susceptibilities for displacement and temperature fluctuations and study their resonances. Due to the thermomechanical coupling, the thermal resonances such as the Landau-Placzek peak and the second-sound doublet appear in the displacement susceptibility, and conversely the acoustic sound wave doublet appears in the temperature susceptibility, Our analytical results not only apply to graphene, but they are also valid for arbitrary 2D crystals with hexagonal symmetry, such as 2D hexagonal boron nitride, 2H-transition-metal dichalcogenides, and oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464717300006 Publication Date 2019-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159346 Serial 5225  
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yuecelen, E.; Lievens, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic scale dynamics of ultrasmall germanium clusters Type A1 Journal article
  Year 2012 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 3 Issue 897 Pages 897  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (up) Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306099900024 Publication Date 2012-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 90 Open Access  
  Notes Fwo; Iap; Iwt Approved Most recent IF: 12.124; 2012 IF: 10.015  
  Call Number UA @ lucian @ c:irua:100340 Serial 183  
Permanent link to this record
 

 
Author Hai, G.-Q.; Candido, L.; Brito, B.G.A.; Peeters, F.M. url  doi
openurl 
  Title Electron pairing: from metastable electron pair to bipolaron Type A1 Journal article
  Year 2018 Publication Journal of physics communications Abbreviated Journal  
  Volume 2 Issue 3 Pages Unsp 035017  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Starting from the shell structure in atoms and the significant correlation within electron pairs, we distinguish the exchange-correlation effects between two electrons of opposite spins occupying the same orbital from the average correlation among many electrons in a crystal. In the periodic potential of the crystal with lattice constant larger than the effective Bohr radius of the valence electrons, these correlated electron pairs can form a metastable energy band above the corresponding single-electron band separated by an energy gap. In order to determine if these metastable electron pairs can be stabilized, we calculate the many-electron exchange-correlation renormalization and the polaron correction to the two-band system with single electrons and electron pairs. We find that the electron-phonon interaction is essential to counterbalance the Coulomb repulsion and to stabilize the electron pairs. The interplay of the electron-electron and electron-phonon interactions, manifested in the exchange-correlation energies, polaron effects, and screening, is responsible for the formation of electron pairs (bipolarons) that are located on the Fermi surface of the single-electron band.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000434996900022 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-6528 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes ; This work was supported by the Brazilian agencies FAPESP and CNPq. GQH would like to thank Prof. Bangfen Zhu for his invaluable support and expert advice. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:152079UA @ admin @ c:irua:152079 Serial 5022  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding model for borophene and borophane Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 12 Pages 125424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427983700004 Publication Date 2018-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 45 Open Access  
  Notes ; Discussions with Dr. Vahid Derakhshan and M. A. M. Keshtan are gratefully acknowledged. This paper is supported by the Methusalem program of the Flemish government and the FLAT-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150836UA @ admin @ c:irua:150836 Serial 4987  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Interlayer excitons in transition metal dichalcogenide heterostructures Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 11 Pages 115104  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Starting from the single-particle Dirac Hamiltonian for charge carriers in monolayer transition metal dichalcogenides (TMDs), we construct a four-band Hamiltonian describing interlayer excitons consisting of an electron in one TMD layer and a hole in the other TMD layer. An expression for the electron-hole interaction potential is derived, taking into account the effect of the dielectric environment above, below, and between the two TMD layers as well as polarization effects in the transition metal layer and in the chalcogen layers of the TMD layers. We calculate the interlayer exciton binding energy and average in-plane interparticle distance for different TMD heterostructures. The effect of different dielectric environments on the exciton binding energy is investigated and a remarkable dependence on the dielectric constant of the barrier between the two layers is found, resulting from competing effects as a function of the in-plane and out-of-plane dielectric constants of the barrier. The polarization effects in the chalcogen layers, which in general reduce the exciton binding energy, can lead to an increase in binding energy in the presence of strong substrate effects by screening the substrate. The excitonic absorbance spectrum is calculated and we show that the interlayer exciton peak depends linearly on a perpendicular electric field, which agrees with recent experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000443671900004 Publication Date 2018-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:153653UA @ admin @ c:irua:153653 Serial 5110  
Permanent link to this record
 

 
Author Janyavula, S.; Lawson, N.; Çakir, D.; Beck, P.; Ramp, L.C.; Burgess, J.O. doi  openurl
  Title The wear of polished and glazed zirconia against enamel Type A1 Journal article
  Year 2013 Publication Journal Of Prosthetic Dentistry Abbreviated Journal J Prosthet Dent  
  Volume 109 Issue 1 Pages 22-29  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Statement of problem. The wear of tooth structure opposing anatomically contoured zirconia crowns requires further investigation. Purpose. The purpose of this in vitro study was to measure the roughness and wear of polished, glazed, and polished then reglazed zirconia against human enamel antagonists and compare the measurements to those of veneering porcelain and natural enamel. Material and methods. Zirconia specimens were divided into polished, glazed, and polished then reglazed groups (n=8). A veneering porcelain (Ceramco3) and enamel were used as controls. The surface roughness of all pretest specimens was measured. Wear testing was performed in the newly designed Alabama wear testing device. The mesiobuccal cusps of extracted molars were standardized and used as antagonists. Three-dimensional (3D) scans of the specimens and antagonists were obtained at baseline and after 200 000 and 400 000 cycles with a profilometer. The baseline scans were superimposed on the posttesting scans to determine volumetric wear. Data were analyzed with a 1-way ANOVA and Tukey Honestly Significant Difference (HSD) post hoc tests (alpha=.05) Results. Surface roughness ranked in order of least rough to roughest was: polished zirconia, glazed zirconia, polished then reglazed zirconia, veneering porcelain, and enamel. For ceramic, there was no measureable loss on polished zirconia, moderate loss on the surface of enamel, and significant loss on glazed and polished then reglazed zirconia. The highest ceramic wear was exhibited by the veneering ceramic. For enamel antagonists, polished zirconia caused the least wear, and enamel caused moderate wear. Glazed and polished then reglazed zirconia showed significant opposing enamel wear, and veneering porcelain demonstrated the most. Conclusions. Within the limitations of the study, polished zirconia is wear-friendly to the opposing tooth. Glazed zirconia causes more material and antagonist wear than polished zirconia. The surface roughness of the zirconia aided in predicting the wear of the opposing dentition. (J Prosthet Dent 2013;109:22-29)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication St. Louis, Mo. Editor  
  Language Wos 000313934900004 Publication Date 2013-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3913 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.095 Times cited 89 Open Access  
  Notes ; ; Approved Most recent IF: 2.095; 2013 IF: 1.419  
  Call Number UA @ lucian @ c:irua:128327 Serial 4612  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; de Romaguera, A.R.C.; Milošević, M.V.; Doria, M.M.; Covaci, L.; Peeters, F.M. pdf  doi
openurl 
  Title Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links Type A1 Journal article
  Year 2012 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 85 Issue 4 Pages 130-130,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Static and dynamic properties of superconducting vortices in a superconducting stripe with a periodic array of weakly-superconducting (or normal metal) regions are studied in the presence of external magnetic and electric fields. The time-dependent Ginzburg-Landau theory is used to describe the electronic transport, where the anisotropy is included through the spatially-dependent critical temperature T-c. Superconducting vortices penetrating into the weak-superconducting region with smaller T-c are more mobile than the ones in the strong superconducting regions. We observe periodic entrance and exit of vortices which reside in the weak link for some short interval. The mobility of the weakly-pinned vortices can be reduced by increasing the uniform applied magnetic field leading to distinct features in the voltage vs. magnetic field response of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000303545400013 Publication Date 2012-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 32 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral programme between Flanders and Brazil. G.R.B. and L.C. acknowledge individual support from FWO-Vl. A.R.de C.R. acknowledges CNPq and FACEPE for financial support. ; Approved Most recent IF: 1.461; 2012 IF: 1.282  
  Call Number UA @ lucian @ c:irua:98267 Serial 761  
Permanent link to this record
 

 
Author da Costa, L.F.; de Barros, A.G.; de Figueiredo Lopes Lucena, L.C.; de Figueiredo Lopes Lucena, A.E. doi  openurl
  Title Asphalt mixture reinforced with banana fibres Type A1 Journal article
  Year 2020 Publication Road Materials And Pavement Design Abbreviated Journal Road Mater Pavement  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract (up) Stone Matrix Asphalt (SMA) is a gap-graded mixture which requires high contents of asphalt binder. To prevent draindown, natural or synthetic fibres and polymer-modified asphalt binders are conventionally used in SMA. Banana agribusiness is one of the major sources of post-harvest residue in Brazil. Amongst those residues, fibres extracted from the pseudostem of the banana plant are resistant and used in diverse purposes. The present study assesses the incorporation of fibres from the pseudostem of the banana plant in an SMA mixture. The fibre contents and lengths capable to prevent binder draindown were evaluated from draindown tests. Mechanical properties of an SMA mixture stabilised with different banana fibre lengths were analysed through the tests of Marshall stability, modified Lottman, Indirect Tensile Strength and Cantabro. The results indicated that the fibres studied are a viable alternative for SMA, stabilising draindown and improving its mechanical performance, especially at the length of 20 mm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508499900001 Publication Date 2020-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1468-0629; 2164-7402 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2020 IF: 1.401  
  Call Number UA @ admin @ c:irua:178727 Serial 7495  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G. pdf  url
doi  openurl
  Title Uniform strain in heterostructure tunnel field-effect transistors Type A1 Journal article
  Year 2016 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 37 Issue 37 Pages 337-340  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Strain can strongly impact the performance of III-V tunnel field-effect transistors (TFETs). However, previous studies on homostructure TFETs have found an increase in ON-current to be accompanied with a degradation of subthreshold swing. We perform 30-band quantum mechanical simulations of staggered heterostructure p-n-i-n TFETs submitted to uniaxial and biaxial uniform stress and find the origin of the subthreshold degradation to be a reduction of the density of states in the strained case. We apply an alternative configuration including a lowly doped pocket in the source, which allows to take full benefit of the strain-induced increase in ON-current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372372100026 Publication Date 2016-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 17 Open Access  
  Notes ; This work was supported by the imec Industrial Affiliation Program. The work of D. Verreck was supported by the Agency for Innovation by Science and Technology in Flanders. The review of this letter was arranged by Editor Z. Chen. ; Approved Most recent IF: 3.048  
  Call Number UA @ lucian @ c:irua:133207 Serial 4271  
Permanent link to this record
 

 
Author Aierken, Y.; Çakir, D.; Peeters, F.M. pdf  doi
openurl 
  Title Strain enhancement of acoustic phonon limited mobility in monolayer TiS3 Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 14434-14441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Strain engineering is an effective way to tune the intrinsic properties of a material. Here, we show by using first-principles calculations that both uniaxial and biaxial tensile strain applied to monolayer TiS3 are able to significantly modify its intrinsic mobility. From the elastic modulus and the phonon dispersion relation we determine the tensile strain range where structure dynamical stability of the monolayer is guaranteed. Within this region, we find more than one order of enhancement of the acoustic phonon limited mobility at 300 K (100 K), i.e. from 1.71 x 10(4) (5.13 x 10(4)) cm(2) V-1 s(-1) to 5.53 x 10(6) (1.66 x 10(6)) cm(2) V-1 s(-1). The degree of anisotropy in both mobility and effective mass can be tuned by using tensile strain. Furthermore, we can either increase or decrease the band gap of TiS3 monolayer by applying strain along different crystal directions. This property allows us to use TiS3 not only in electronic but also in optical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000378102700036 Publication Date 2016-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 24 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-V1). Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:134628 Serial 4250  
Permanent link to this record
 

 
Author Pham, A.-T.; Zhao, Q.-T.; Jungemann, C.; Meinerzhagen, B.; Mantl, S.; Sorée, B.; Pourtois, G. pdf  doi
openurl 
  Title Comparison of strained SiGe heterostructure-on-insulator (0 0 1) and (1 1 0) PMOSFETs : CV characteristics, mobility, and ON current Type A1 Journal article
  Year 2011 Publication Solid state electronics Abbreviated Journal Solid State Electron  
  Volume 65-66 Issue Pages 64-71  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Strained SiGe heterostructure-on-insulator (0 0 1) and (1 1 0) PMOSFETs are investigated including important aspects like CV characteristics, mobility, and ON current. The simulations are based on the self-consistent solution of 6 × 6 k · p Schrödinger Equation, multi subband Boltzmann Transport Equation and Poisson Equation, and capture size quantization, strain, crystallographic orientation, and SiGe alloy effects on a solid physical basis. The simulation results are validated by comparison with different experimental data sources. The simulation results show that the strained SiGe HOI PMOSFET with (1 1 0) surface orientation has a higher gate capacitance and a much higher mobility and ON current compared to a similar device with the traditional (0 0 1) surface orientation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000297182700012 Publication Date 2011-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.58 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 1.58; 2011 IF: 1.397  
  Call Number UA @ lucian @ c:irua:92866 Serial 433  
Permanent link to this record
 

 
Author Milovanović, S.P.; Tadic, M.Z.; Peeters, F.M. doi  openurl
  Title Graphene membrane as a pressure gauge Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 111 Issue 4 Pages 043101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Straining graphene results in the appearance of a pseudo-magnetic field which alters its local electronic properties. Applying a pressure difference between the two sides of the membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000406779700035 Publication Date 2017-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 11 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem program, the Erasmus+ programme, and the Serbian Ministry of Education, Science and Technological Development. ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:145202 Serial 4718  
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M. url  doi
openurl 
  Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 13 Issue 1 Pages 5776-5777  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000862552600012 Publication Date 2022-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 3 Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:191575 Serial 7228  
Permanent link to this record
 

 
Author Cao, L.-H.; Yu, W.; Xu, H.; Zheng, C.-Y.; Liu, Z.-J.; Li, B.; Bogaerts, A. url  doi
openurl 
  Title Terahertz radiation from oscillating electrons in laser-induced wake fields Type A1 Journal article
  Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 70 Issue Pages 046408,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Strong terahertz (1THz=1012Hz) radiation can be generated by the electron oscillation in fs-laser-induced wake fields. The interaction of a fs-laser pulse with a low-density plasma layer is studied in detail using numerical simulations. The spatial distribution and temporal evolution of terahertz electron current developed in a low-density plasma layer are presented, which enables us to calculate the intensity distribution of THz radiation. It is shown that laser and plasma parameters, such as laser intensity, pulse width, and background plasma density, are of key importance to the process. The optimum condition for wake-field excitation and terahertz emission is discussed upon the simulation results. Radiation peaked at 6.4 THz, with 900 fs duration and 9% bandwidth, can be generated in a plasma of density 5×1017cm−3. It turns out that the maximum radiation intensity scales as n03a04 when wake field is resonantly excited, where n0 and a0 are, respectively, the plasma density and the normalized field amplitude of the laser pulse.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000225689600086 Publication Date 2004-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:49818 Serial 3509  
Permanent link to this record
 

 
Author Cantoro, M.; Klekachev, A.V.; Nourbakhsh, A.; Sorée, B.; Heyns, M.M.; de Gendt, S. doi  openurl
  Title Long-wavelength, confined optical phonons in InAs nanowires probed by Raman spectroscopy Type A1 Journal article
  Year 2011 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 79 Issue 4 Pages 423-428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Strongly confined nano-systems, such as one-dimensional nanowires, feature deviations in their structural, electronic and optical properties from the corresponding bulk. In this work, we investigate the behavior of long-wavelength, optical phonons in vertical arrays of InAs nanowires by Raman spectroscopy. We attribute the main changes in the spectral features to thermal anharmonicity, due to temperature effects, and rule out the contribution of quantum confinement and Fano resonances. We also observe the appearance of surface optical modes, whose details allow for a quantitative, independent estimation of the nanowire diameter. The results shed light onto the mechanisms of lineshape change in low-dimensional InAs nanostructures, and are useful to help tailoring their electronic and vibrational properties for novel functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000288120600005 Publication Date 2011-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 1.461; 2011 IF: 1.534  
  Call Number UA @ lucian @ c:irua:89502 Serial 1841  
Permanent link to this record
 

 
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N. url  doi
openurl 
  Title Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 3 Pages 035302-35310  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001074455300012 Publication Date 2023-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:200348 Serial 9089  
Permanent link to this record
 

 
Author Rezvani, S.J.; Perali, A.; Fretto, M.; De Leo, N.; Flammia, L.; Milošević, M.; Nannarone, S.; Pinto, N. url  doi
openurl 
  Title Substrate-induced proximity effect in superconducting niobium nanofilms Type A1 Journal article
  Year 2018 Publication Condensed Matter Abbreviated Journal  
  Volume 4 Issue 1 Pages 4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Structural and superconducting properties of high-quality niobium nanofilms with different thicknesses are investigated on silicon oxide (SiO2) and sapphire substrates. The role played by the different substrates and the superconducting properties of the Nb films are discussed based on the defectivity of the films and on the presence of an interfacial oxide layer between the Nb film and the substrate. The X-ray absorption spectroscopy is employed to uncover the structure of the interfacial layer. We show that this interfacial layer leads to a strong proximity effect, especially in films deposited on a SiO2 substrate, altering the superconducting properties of the Nb films. Our results establish that the critical temperature is determined by an interplay between quantum-size effects, due to the reduction of the Nb film thicknesses, and proximity effects. The detailed investigation here provides reference characterizations and has direct and important implications for the fabrication of superconducting devices based on Nb nanofilms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464289300001 Publication Date 2018-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes ; This project was financially supported by University of Camerino, FAR project CESEMN. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:159463 Serial 5233  
Permanent link to this record
 

 
Author Galván Moya, J.E.; Nelissen, K.; Peeters, F.M. pdf  doi
openurl 
  Title Structural transitions in vertically and horizontally coupled parabolic channels of Wigner crystals Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 18 Pages 184102-184109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Structural phase transitions in two vertically or horizontally coupled channels of strongly interacting particles are investigated. The particles are free to move in the x direction but are confined by a parabolic potential in the y direction. They interact with each other through a screened power-law potential (r(-n)e(-r/lambda)). In vertically coupled systems, the channels are stacked above each other in the direction perpendicular to the (x, y) plane, while in horizontally coupled systems both channels are aligned in the confinement direction. Using Monte Carlo (MC) simulations we obtain the ground-state configurations and the structural transitions as a function of the linear particle density and the separation between the channels. At zero temperature, the vertically coupled system exhibits a rich phase diagram with continuous and discontinuous transitions. On the other hand, the horizontally coupled system exhibits only a very limited number of phase transitions due to its symmetry. Further, we calculated the normal modes for the Wigner crystals in both cases. From MC simulations, we found that in the case of vertically coupled systems, the zigzag transition is only possible for low densities. A Ginzburg-Landau theory for the zigzag transition is presented, which predicts correctly the behavior of this transition from which we interpret the structural phase transition of the Wigner crystal through the reduction of the Brillouin zone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310683600002 Publication Date 2012-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:105150 Serial 3271  
Permanent link to this record
 

 
Author Varjovi, M.J.; Yagmurcukardes, M.; Peeters, F.M.; Durgun, E. doi  openurl
  Title Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X = S, Se, and Te Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 19 Pages 195438  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Structural symmetry breaking in two-dimensional materials can lead to superior physical properties and introduce an additional degree of piezoelectricity. In the present paper, we propose three structural phases (1H, 1T, and 1T') of Janus WXO (X = S, Se, and Te) monolayers and investigate their vibrational, thermal, elastic, piezoelectric, and electronic properties by using first-principles methods. Phonon spectra analysis reveals that while the 1H phase is dynamically stable, the 1T phase exhibits imaginary frequencies and transforms to the distorted 1T' phase. Ab initio molecular dynamics simulations confirm that 1H- and 1T'-WXO monolayers are thermally stable even at high temperatures without any significant structural deformations. Different from binary systems, additional Raman active modes appear upon the formation of Janus monolayers. Although the mechanical properties of 1H-WXO are found to be isotropic, they are orientation dependent for 1T'-WXO. It is also shown that 1H-WXO monolayers are indirect band-gap semiconductors and the band gap narrows down the chalcogen group. Except 1T'-WSO, 1T'-WXO monolayers have a narrow band gap correlated with the Peierls distortion. The effect of spin-orbit coupling on the band structure is also examined for both phases and the alteration in the band gap is estimated. The versatile mechanical and electronic properties of Janus WXO monolayers together with their large piezoelectric response imply that these systems are interesting for several nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655902600004 Publication Date 2021-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 48 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:179050 Serial 7000  
Permanent link to this record
 

 
Author Bafekry, A.; Shahrokhi, M.; Yagmurcukardes, M.; Gogova, D.; Ghergherehchi, M.; Akgenc, B.; Feghhi, S.A.H. pdf  url
doi  openurl
  Title Surface functionalization of the honeycomb structure of zinc antimonide (ZnSb) monolayer : a first-principles study Type A1 Journal article
  Year 2021 Publication Surface Science Abbreviated Journal Surf Sci  
  Volume 707 Issue Pages 121796  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Structural, electronic, optic and vibrational properties of Zinc antimonide (ZnSb) monolayers and their func-tionalized (semi-fluorinated and fully chlorinated) structures are investigated by means of the first-principles calculations. The phonon dispersion curves reveal the presence of imaginary frequencies and thus confirm the dynamical instability of ZnSb monolayer. The calculated electronic band structure corroborates the metallic character with fully-relativistic calculations. Moreover, we analyze the surface functionalization effect on the structural, vibrational, and electronic properties of the pristine ZnSb monolayer. The semi-fluorinated and fully-chlorinated ZnSb monolayers are shown to be dynamically stable in contrast to the ZnSb monolayer. At the same time, semi-fluorination and fully-chlorination of ZnSb monolayer could effectively modulate the metallic elec-tronic properties of pristine ZnSb. In addition, a magnetic metal to a nonmagnetic semiconductor transition with a band gap of 1 eV is achieved via fluorination, whereas a transition to a semiconducting state with 1.4 eV band gap is found via chlorination of the ZnSb monolayer. According to the optical properties analysis, the first ab-sorption peaks of the fluorinated-and chlorinated-ZnSb monolayers along the in-plane polarization are placed in the infrared range of spectrum, while they are in the middle ultraviolet for the out-of-plane polarization. Interestingly, the optically anisotropic behavior of these novel monolayers along the in-plane polarizations is highly desirable for design of polarization-sensitive photodetectors. The results of the calculations clearly proved that the tunable electronic properties of the ZnSb monolayer can be realized by chemical functionalization for application in the next generation nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626633500001 Publication Date 2020-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.062 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.062  
  Call Number UA @ admin @ c:irua:177623 Serial 7026  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Rivera-Julio, J.; Peeters, F.M.; Mendoza-Estrada, V.; Gonzalez-Hernandez, R. pdf  doi
openurl 
  Title Structural, mechanical and electronic properties of two-dimensional structure of III-arsenide (111) binary compounds: An ab-initio study Type A1 Journal article
  Year 2018 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 144 Issue 144 Pages 285-293  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Structural, mechanical and electronic properties of two-dimensional single-layer hexagonal structures in the (111) crystal plane of IIIAs-ZnS systems (III = B, Ga and In) are studied by first-principles calculations based on density functional theory (DFT). Elastic and phonon dispersion relation display that 2D h-IIIAs systems (III = B, Ga and In) are both mechanical and dynamically stable. Electronic structures analysis show that the semiconducting nature of the 3D-IIIAs compounds is retained by their 2D single layer counterpart. Furthermore, density of states reveals the influence of sigma and pi bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Calculations of elastic constants show that the Young's modulus, bulk modulus and shear modulus decrease for 2D h-IIIAs binary compounds as we move down on the group of elements of the periodic table. In addition, as the bond length between the neighboring cation-anion atoms increases, the 2D h-IIIAs binary compounds display less stiffness and more plasticity. Our findings can be used to understand the contribution of the r and p bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Structural and electronic properties of h-IIIAs systems as a function of the number of layers have been also studied. It is shown that h-BAs keeps its planar geometry while both h-GAs and h-InAs retained their buckled ones obtained by their single layers. Bilayer h-IIIAs present the same bandgap nature of their counterpart in 3D. As the number of layers increase from 2 to 4, the bandgap width for layered h-IIIAs decreases until they become semimetal or metal. Interestingly, these results are different to those found for layered h-GaN. The results presented in this study for single and few-layer h-IIIAs structures could give some physical insights for further theoretical and experimental studies of 2D h-IIIV-like systems. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424902300036 Publication Date 2017-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 3 Open Access  
  Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712 – Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.292  
  Call Number UA @ lucian @ c:irua:149897UA @ admin @ c:irua:149897 Serial 4949  
Permanent link to this record
 

 
Author Pinto, N.; Rezvani, S.J.; Perali, A.; Flammia, L.; Milošević, M.V.; Fretto, M.; Cassiago, C.; De Leo, N. doi  openurl
  Title Dimensional crossover and incipient quantum size effects in superconducting niobium nanofilms Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 8 Pages 4710  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) Superconducting and normal state properties of Niobium nanofilms have been systematically investigated as a function of film thickness, on different substrates. The width of the superconductingto- normal transition for all films is remarkably narrow, confirming their high quality. The superconducting critical current density exhibits a pronounced maximum for thickness around 25 nm, marking the 3D-to-2D crossover. The magnetic penetration depth shows a sizeable enhancement for the thinnest films. Additional amplification effects of the superconducting properties have been obtained with sapphire substrates or squeezing the lateral size of the nanofilms. For thickness close to 20 nm we measured a doubled perpendicular critical magnetic field compared to its large thickness value, indicating shortening of the correlation length and the formation of small Cooper pairs. Our data analysis indicates an exciting interplay between quantum-size and proximity effects together with strong-coupling effects and the importance of disorder in the thinnest films, placing these nanofilms close to the BCS-BEC crossover regime.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000427588300011 Publication Date 2018-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 37 Open Access  
  Notes ; We thank Antonio Bianconi, Mauro Doria and Vincenzo Lacquaniti for useful discussions. We acknowledge the collaboration with Federica Celegato for AFM analysis and Sara Quercetti for the electrical properties characterization. A. P. and N. P. acknowledge financial support from University of Camerino FAR project CESEMN. We also acknowledge the collaboration within the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:150843UA @ admin @ c:irua:150843 Serial 4965  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M. pdf  doi
openurl 
  Title Ultra-small metallic grains : effect of statistical fluctuations of the chemical potential on superconducting correlations and vice versa Type A1 Journal article
  Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 27 Pages 275701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Superconducting correlations in an isolated metallic grain are governed by the interplay between two energy scales: the mean level spacing delta and the bulk pairing gap Delta(0), which are strongly influenced by the position of the chemical potential with respect to the closest single-electron level. In turn superconducting correlations affect the position of the chemical potential. Within the parity projected BCS model we investigate the probability distribution of the chemical potential in a superconducting grain with randomly distributed single-electron levels. Taking into account statistical fluctuations of the chemical potential due to the pairing interaction, we find that such fluctuations have a significant impact on the critical level spacing delta(c) at which the superconducting correlations cease: the critical ratio delta(c)/Delta(0) at which superconductivity disappears is found to be increased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000305653100012 Publication Date 2012-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 9 Open Access  
  Notes ; This work was supported by the European Community under the Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF network INSTANS. MDC and AAS are grateful to A Vagov for stimulating discussions. ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:100280 Serial 3793  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: