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Starting from a model of microscopic interactions between C70 molecules, we have developed a theory
which describes the orientational dynamics and its coupling to lattice displacements in the rhombohedral phase
of C70 fullerite. The Landau free energy is calculated. We obtain a first-order phase transition to a monoclinic
structure with the space groupP21 /m. The transition is driven by the condensation of orientational quadru-
poles at theF point of the Brillouin zone of the rhombohedral lattice. We find no evidence that the monoclinic
structure is connected with the freezing in of orientations around the fivefold molecular axis. We calculate the
lattice strains that are associated with the transition to the monoclinic structure. The theory is compared with
a range of experimental data on the phase transition.@S0163-1829~96!07742-9#

I. INTRODUCTION

Solid C70 ~Ref. 1! undergoes a sequence of structural
phase transitions.2–4 At high temperature*350 K, solid
C70 forms an orientationally disordered phase5 with face-
centered-cubic~fcc! lattice ~space groupFm3̄m). Depending
on the treatment of the sample, also a hexagonal close-
packed structure exists.1,2,6,7 Upon cooling from the fcc
phase, a transition to a rhombohedral phase~space group
R3̄m) occurs, followed by a transition to a monoclinic phase
around 295 K.2–4 Unlike in solid C60 where the transition
from theFm3̄m to thePa3̄m phase is essentially a phenom-
enon of orientational ordering,8–10while the centers of mass
of the molecules still occupy an fcc lattice, the transition
from the cubic to the rhombohedral phase in solid C70 is due
to a coupling of orientational quadrupoles ofT2g symmetry
to trigonal shear strains.11,12 Such a bilinear coupling which
is characteristic for ferroelastic transitions,13 is favored by
the elongated shape of the C70 molecule. Important insight
can be gained by molecular-dynamics simulations in solid
C70.

14 Molecular dynamics shows that in the rhombohedral
phase the molecules are on the average oriented along a
@111# direction of the former cubic phase and that the unit
cell is stretched along this direction. It is also found that the
rhombohedral phase is followed by a monoclinic phase14 at
lower temperature.

The C70 molecule has symmetryD5h with a long fivefold
axis.15 As was noticed before, in the rhombohedral phase the
C70 molecules effectively behave as solid objects ofD`h
symmetry performing fast rotations about long axes.11,12,16

The phase transition to the monoclinic phase was initially
associated with orientational ordering of C70 molecules
where the rotations around the fivefold axis are frozen-in.2

This conclusion prompted several investigations where rota-
tor functions belonging to the manifoldl55 were chosen as
order parameters for the monoclinic phase.17,18However, this
approach predicts a space groupPbnm,19 while the experi-
mentally identified symmetry group isP21 /m.

3,20,21

In this paper we propose a theory of the transition based
on a microscopic model which indicates that quadrupolar

interactions (l52) remain the strongest ones driving the
transition, while the interactions connected withl55 are
negligible and unimportant. Our results are consistent with
all experimental data on the phase transition from the rhom-
bohedral to the monoclinic phase.

II. ORIENTATIONAL COORDINATES AND
INTERACTION POTENTIAL

In the present section we will derive the interaction po-
tential for a system ofN C70 molecules in the rhombohedral
phase. A convenient way to treat the orientation-dependent
properties of nonlinear molecules in crystals is to use rotator
functions.22–24 The rotator functions take into account the
symmetry of the molecule and of the site. Rotator functions
for the cubic phase of solid C70 were given in Ref. 12. Here
we first extend this concept to the rhombohedral phase.

We start with a molecule in its standard orientation15 with
respect to a rectangular coordinate system. The molecule is
centered at the origin, its fivefold axis is taken asz axis, the
(x,y) plane is a symmetry plane. The Cartesian coordinates
of the molecule, taken as a rigid body, are specified in
Ref.15. We classify the atoms~also calledC centers! of the
molecule in~001! planes. We consider five groups of atoms
labeled by an indexl (l5125, as shown in Fig. 1!. There
are ten atoms in the equatorial planez(l51)50 , ten atoms
in each of the planes6z(l), l52,3 and five atoms in each
of the planes6z(l), l54,5. To describe the intermolecular
interaction due to charge-density variations onC-C, bonds25

we introduce ‘‘double bond’’ centers of interaction~called
D centers! and ‘‘intermediate bond’’ centers~called I cen-
ters!. There are fiveD centers in each of the planes6z(6)
and in planes6z(7). Finally there are fiveI centers in each
of the planes6z(8) and ten in each plane6z(9) ~see also
Table I of Ref.12!. The centers in the layers are labeled by
indicesn(l), the correspondent polar coordinates of the cen-
ters are@d(l),V8(n(l)#, whered is distance from the ori-
gin to the center and whereV8[(u8,f8) are the polar
angles. We then calculate the molecular structure
coefficients10
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Heren(l) is the number of centers in groupl. Symmetry of
the molecule implies that the coefficientscl

m(l) are different
from zero form50,65,610, . . . and (l2m) even.11,5,12For
l50, 2, 4, 6, and 8, only the coefficientscl

0(l) are different
from zero. They are quoted in Table I of Ref.12. Since
m50, the azimuthal anglef is irrelevant, the molecule is
spinning around its fivefold axis.

In the rhombohedral phase, the site symmetry is described
by the point groupD3d . The corresponding symmetry
adapted functions~SAF’s! are tabulated in Ref. 26:

Sl
t~V!5 (

m52 l

l

Yl
m~V!a l

mt . ~2.2!

Heret[(G,r,d), whereG refers to the irreducible represen-
tations of the groupD3d , r labels the subspaces ofG if G
occurs more than once for a givenl , d labels the components
of G.

The site symmetry adapted functions are defined with re-
spect to the crystal fixed system of axes shown in Fig. 2. In
particular thez axis coincides with the threefold axis of
D3d . In order to relate the site symmetry and the molecular
symmetry, we construct the rotator functions by following
the procedure of Ref. 12. We start from a situation where the
molecular system of axes coincides with the crystal fixed

system of axes. Then the molecule is tilted away from the
standard position by a rotationR(v), v stands for the Euler
angles which specify the orientation of the molecule with
respect to crystal fixed system of axes. The corresponding
rotator functions are then given by

Ul
t~v,l!5cl

0~l!(
m

Dl
0m~v!a l

mt . ~2.3!

Here the coefficientsa l
mt refer to the site point groupD3d .

The Wigner matrixDl
0m is given by

Dl
0m~v!5~21!mA 4p

2l11
Yl
m~b,a!* . ~2.4!

Here b and a are polar angles of the fivefold axis of the
molecule. As we have seen the third Euler angleg5f,
which specifies the rotation of the molecule about the five-
fold axis, is irrelevant. It should be noted that rotator func-
tions with l55 would restore the azimuthalf dependence.
As we will see later, the corresponding contributions to the
intermolecular potential are negligibly small and can be
omitted. In the following it will be convenient to use rotator
functions which are independent on the group indexl and
hence we define

Ul
t~v!5(

m
Dl
0m~v!a l

mt . ~2.5!

The coefficientscl
0(l) which occur inUl

t(v,l) will then be
counted by the expansion coefficients of the intermolecular
potential~see below!. In Appendix A we quote relevant ro-
tator functions of the groupD3d .

The total intermolecular potential is given by a sum of
potentials between interaction centers belonging to different
molecules

FIG. 1. The C70 molecules withC ~atomicl51-5!, D ~double
bondl56,7!, andI ~intermediate,l58,9! interaction centers.

TABLE I. Interaction potential parameters betweenC,D,I cen-
ters of interaction.

units C,C C,D C,I D ,D D,I I ,I

Cll8
(1) 106 K 6.24 6.24 0.84 6.24 0.84 0.114

Cll8
(2) Å21 3.6 3.4 3.5 3.2 3.3 3.4

Bll8 104 K3Å6 4.24 0 0 0 0 0

FIG. 2. The nearest neighbors of a C70 molecule~0! in rhom-
bohedral phase. Indices 4–9 refer to sites laying on the base plane,
1–3 sites lay on the plane situated above the base plane, and 10–12,
below the base plane. Lattice constantsa andc are indicated.
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V~nW ,l,n;nW 8,l8,n8! ~2.6!

The potentialV(nW ,l,n;nW 8,l8,n8) depends on the distance
r between the centern(l) on moleculenW and the center
n8(l8) on moleculenW 8. One has

r5uRW ~nW ,l,n!2RW ~nW 8,l8,n8!u, ~2.7!

where the position of the interaction centern(l) on the
nW th molecule is given by

RW ~nW ,l,n!5XW ~nW !1dW „n~nW ,l!…. ~2.8!

HereXW (nW ) is the center-of-mass position of the molecule and
dW specifies the position of the centern(l) with respect to the
molecular center of mass. HeredW „n(nW ,l)… has polar coordi-
natesd(l),V„n(nW ,l)… and depends on the orientation of the
molecule. The positions$XW (nW )% form a rigid rhombohedral
lattice. Expanding the potentialV in terms of rotator func-
tions, we obtain

V5VRR1VR. ~2.9!

HereVRR refers to the rotation-rotation~RR! dependent part
of the intermolecular potential andVR is the crystal-field
potential. Explicitly one has

VRR5
1

2(nWnW 8
(
l l 8

(
tt8

Jll 8
tt8~nW 2nW 8!Ul

t
„V~nW !…Ul 8

t8
„V~nW 8!….

~2.10!

HerenW stands forv(nW ). The indext(t8) refers to irreducible
representations ofD3d which are different from the unit rep-
resentation. The coefficients are given by

Jll 8
tt8~nW 2nW 8!5(

ll8
v l l 8

tt8~nW ,l;nW 8,l8!cl
0~l!cl 8

0
~l8!,

~2.11!

where

v l l 8
tt8~nW ,l;nW 8,l8!5E dVnE dVn8V~nW ,l,n;nW 8,l8,n8!

3Sl
t~Vn!Sl 8

t8~Vn8!, ~2.12!

The crystal field is given by a sum of single-particle
terms:

VR5(
nW

(
l

(
r

wl
A1g ,rUl

A1g ,r~nW !, ~2.13!

where

wl
A1g ,r5 (

nW 851

12

(
ll8

c0
0~l!cl

0~l8!wl
A1g ,r~nW ,l;nW 8,l8!

~2.14!

with

wl
A1g ,r~nW ,l;nW 8,l8!5

1

A4p
E dVnE dVn8V

3~nW ,l,n;nW 8,l8,n8!Sl
A1g ,r~Vn!.

~2.15!

The functionsSl
A1g ,r andUl

A1g ,r are quoted in Appendix A.
The crystal field is the potential experienced by a molecule at
site nW , while its neighbors at sitesnW 8 are taken in spherical
approximation. Here we restrict ourselves to the 12 nearest
neighbors in the rhombohedral lattice~see Fig. 2!.

In the next section we will study collective phenomena. It
is useful to rewrite the orientation-orientation dependent in-
teraction in Fourier space. Defining

Ult~qW !5
1

AN(
nW

e2 iqW •XW ~nW !Ul
t~nW !, ~2.16!

Jl l 8
tt8~qW !5(

nW 8
Jll 8

tt8~nW 2nW 8!eiq
W
•[XW ~nW !2XW ~nW 8!] , ~2.17!

whereqW is the wave vector, we get for the rotation-rotation
interaction

VRR5
1

2(qW (
l l 8

(
tt8
Jl l 8

tt8~qW !Ult~qW !Ul 8
t8~2qW !. ~2.18!

III. ORIENTATIONAL PHASE TRANSITION

In the following we will investigate whether the
orientation-dependent interactionsV5VRR1V in the rhom-
bohedral phase lead to an orientational phase transition. Our
aim is to predict the structure of the low-symmetry phase.

We start from a phenomenological model of the intermo-
lecular potential which is based on the interactions between
the centers of typeC,D, and I on neighboring molecules.
The interaction is given by a sum of repulsive Born-Mayer
and attractive van der Waals potential:

V~nW ,l,n;n8W ,l8,n8!5Cll8
~1! exp~2Cll8

~2! r !2Bll8r
26,

~3.1!

where the distancer is given by expression~2.7!. The poten-
tial parametersCll8

(1) , Cll8
(2) , andBll8 are specified in Table

I. The potential used here is somewhat different from the one
used in Ref. 12. In particular we have reduced the coeffi-
cientsC(1) for the repulsive interactions involvingI centers
and we have, on the other hand, retained an attractive van der
Waals part only forC centers. For a comparison with the
results of Ref. 12, we refer the reader to the end of Sec. IV.

A. Rotation-rotation interaction VRR

We have calculated the interaction coefficients

Jll 8
tt8(nW 2nW 8) of the intermolecular potentialVRR by means of
expressions~2.11! and ~2.12!. Here again we restrict our-
selves to the 12 nearest neighborsnW 8 of a molecule centered
at nW in the rhombohedral lattice. The relevant SAF’s ofEg
and Eu symmetry are given in Appendix A. The angular
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integrations are done numerically. We find that by far the
largest matrix elements are obtained for the quadrupolar
SAF’s S2

Eg,35Y2
2,c and S2

Eg,452Y2
2,s , which form a two-

dimensional representationEg of the groupD3d . We have

estimated that the interaction coefficientsJ55
tt8(nW 2nW 8) for

l55 by a factor 1.5–5 smaller than the corresponding coef-
ficients of quadrupolar interactions calculated with SAF’s
S2
Eg,3 andS2

Eg,4 . We take this fact as an indication that rota-
tions of the C70 molecule about its fivefold axis still remain
allowed. A freezing in of molecular orientations about the
fivefold axis is not required for the low-symmetry phase
which turns out to have a monoclinic structure~see below!.

In the following we will only retain contributions from
SAF’s S2

Eg,3 and S2
Eg,4 to the rotation-rotation interaction

VRR, expression~2.18!. We simplify the notations by writing
S2

a , wherea51 stands for (Eg,3) anda52 for (Eg,4). We

then study the eigenvalues of the 232 matrix J22(qW ) with
elementsJ22ab(qW ) as a function ofqW in the Brillouin zone of
the rhombohedral lattice. The largest negative eigenvalue is
found at theF point of the Brillouin zone and we will denote
this eigenvalue byJF and the corresponding eigenvector by
eWF with elementseF(auqW F):

J22~qW F!eWF5JFeWF . ~3.2!

We obtainJF5236 580 K, the contributions from the dif-
ferent interaction centers are listed in Table II. There are six
points in Brillouin zone giving the same eigenvalueJF .
They are connected with theF point by symmetry operations
of C3,C3

2, andI ~inversion! of the point groupD3d :

F: 6S p

A3a
,2

p

3a
,
2p

3c D ;
F8: 6S 0,2p

3a
,
2p

3c D ;
F9: 6S 2

p

A3a
,2

p

3a
,
2p

3c D . ~3.3!

Herea55.846 Å andc59.283 Å are lattice constants of the
rhombohedral lattice3 ~see Fig. 2!. The normalized eigenvec-
tors are

eWF5F A3
2

2
1

2

G ; eWF85F01G ; eWF95F A3
2

1

2

G , ~3.4!

and the corresponding normal coordinates of orientations are
given by

Q2~qW p!5 (
a51

2

ep~auqW p!U2a~qW p!, ~3.5!

where the subscriptp stands forF, F8, F9. The six points in
the Brillouin zone correspond to physically equivalent states
~domains!. SinceeWF8 is particularly simple, we will retain
hereafterQ2(qW F8) as the order parameter variable. The con-
densation of this order parameter leads to a monoclinic struc-
ture. The symmetry lowering can be represented by the fol-
lowing diagram:

R3̄m: @qW F8;Q2
e~qW F8!5N1/2hÞ0#→P21

/m. ~3.6!

Here the indexe stands for a thermal expectation value,h is
the order-parameter amplitude. In real space we have

^U2
Eg,4~nW !&5hcos„qW F8•X

W ~nW !…, ~3.7a!

h5A4p

5
^Y2

2,s~nW !&, ~3.7b!

where the rotator functionU2
Eg,4 is given by Eq.~A4!. As

follows from Eq. ~3.7a!, ^U2
Eg,4(nW )& changes from1h to

2h for neighboring sites. Taking into account the angular
dependence ofY2

2,s(nW ), we show in Fig. 3 the breaking of
rhombohedral symmetry and formation of a new unit cell in
the monoclinic phase. There are six molecules per unit cell.

B. Crystal field VR

In order to study more quantitatively the phase transition
R3̄m→P21

/m, we need to know the crystal fieldVR in the
rhombohedral phase. Starting from the interaction Eq.~3.1!
with parameters specified in Table I, we have calculated the
coefficientswl

A1g ,r by means of Eqs.~2.14! and~2.15!, using

the SAF’sSl
A1g ,r of Appendix A. The crystal field resulting

from the leading coefficient,w2
A1g,15226464 K, is enor-

mously strong. Such a strong crystal field prevents any tilting
of the long molecular axis away from the threefold trigonal
axis and hence precludes a phase transition to a low-
symmetry structure. The reason for the strong crystal field is
an artefact of our calculation. For elongated molecules like
C70 on a rigid lattice, the treatment of the 12 neighbors of a
central molecule as spheres~see Sec. II! is a too crude ap-
proximation. Indeed by averaging the positions of interaction
centers over spheres with radii corresponding to their dis-
tances from the center of the molecule, the repulsive forces
between neighboring molecules on a rigid lattice are overes-
timated. We observe that molecular-dynamics simulations14

are not subject to these restrictions. Going one step beyond
this approximation, we replace the neighboring molecules by
quadrupoles S2

A1g,15Y2
0 and calculate the coefficients

Jl 2
A1g ,r;A1g,1(nW 2nW 8) by means of Eqs.~2.11! and ~2.12!. We

obtain for the corresponding crystal field at sitenW :

TABLE II. Partial contribution ofC,D,I centers to the constant
JF , in K.

C,C C,D D,D I ,C I,D I ,I total

JF -10 017 -19 595 -8581 847 782 -16 -36 580
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(
nW 8

12

Vl 2
A1g ,r;A1g,1~nW 2nW 8!5(

nW 8
Jl 2
A1g ,r;A1g,1~nW 2nW 8!

3Ul
A1g ,r~nW !U2

A1g,1~nW 8! ~3.8!

In the mean-field approximation we replaceU2
A1g,1(nW 8) by its

crystal-field average and rewrite expression~3.8! as

(
nW 8

Jl 2
A1g ,r;A1g,1~nW 2nW 8!Ul

A1g ,r~nW !^U2
A1g,1~nW 8!&CF

5w̃ l
A1g ,rUl

A1g ,r~nW !, ~3.9!

where

w̃ l
A1g ,r5(

nW 8
Jl 2
A1g ,r;A1g,1~nW 2nW 8!^U2

A1g,1~nW 8!&CF.

~3.10!

We observe that̂ &CF is independent ofnW 8 and thatwlCF
A1g ,r is

independent ofnW ~equivalence of rhombohedral lattice sites!.
Including the contributions Eq.~3.9!, we replace the crystal-
field expression~2.13! by

VCF5(
nW

(
l

(
r

wlCF
A1g ,rUl

A1g ,r~nW !, ~3.11!

where

wlCF
A1g ,r5wl

A1g ,r1w̃ l
A1g ,r . ~3.12!

The thermal average in Eq.~3.10! is found by solving self-
consistently the equation

^U2
A1g,1&CF5

1

ZE dvexp@2VCF~v!/T#U2
A1g,1~v!,

~3.13a!

Z5E dvexp@2VCF~v!/T#, ~3.13b!

wheredv5sinbdbda, v5(b,a) being the polar angles of
the long molecular axis. Calculatingw̃ 2

A1g,1 by means of Eqs.
~3.10!, ~3.13a!, and ~3.13b!, we obtain a positive value,
20 854 K, forT5285 K. Hence it follows from Eq.~3.12!
that the leading crystal-field coefficient is strongly reduced,
w2CF
A1g ,1525610 K instead ofw2

A1g ,1 . This reduction of the
crystal field means that the system will become more suscep-
tible to orientational fluctuations which lower the rhombohe-
dral symmetry and lead to a monoclinic phase of space group
P21

/m. The crystal-field coefficients are quoted in Table III.
They are slightly temperature dependent. As an indication
theT dependence of̂U2

A1g,1&CF in the rhombohedral phase is
shown in Fig. 4. The nature of the average^U2

A1g,1&CF[z is
also discussed in Sec. V.

As an additional mechanism which modifies the crystal
field, we have taken into account the orientational self-
interactionVs of the C70 molecule with the lattice deforma-
tions. Self-interactions are a consequence of bilinear
rotation-translation~RT! coupling. These effects have been
studied thoroughly for the fcc phases of KCN~Ref.27! and
of C70 ~Ref.12!. For the present work, we have extended the
method to the rhombohedral phase of C70. Without giving
the details of the calculations, we only mention that the de-
composition of the square of the rotator functions, (U2

a)2,
wherea5(Eg,3) and (Eg,4), contains the functionsUl

A1g,1

FIG. 3. The transition from rhombohedral (A) to monoclinic
(B) lattice and formation of the monoclinic primitive unit cell. Pro-
jection on the (x,y) plane; labels 1, 11, and 5 are shown for com-
parison with Fig. 2. The drawn symbols indicate the main transfor-
mation properties of the corresponding orientational crystal field.
Circles (A) represent the equivalent crystal field for every site in
the rhombohedral phase. In the monoclinic phase (B) the breaking
of D3d site symmetry is shown by drawing positive lobes ofU2

E,4

}Y2
2,s function at different lattice sites. Solid lines confine the

monoclinic unit cells (B). Different crystal planes are represented
by different size of symbols. The screw axis~dashed line in the base
plane! and glide reflection plane~dotted and dashed line! of sym-
metry groupP21 /m are shown for the monoclinic phase (B).

TABLE III. Crystal-field coefficients, in K (T15285 K!.

( l ,r) ~2,1! ~4,1! ~6,1! ~8,1! ~4,2! ~6,2! ~6,3! ~8,3!

wl
A1g ,r -26 464 1712 2109 -1463 66 -294 -4071 2677

w̃ l
A1g ,r (T1) 20 854 -1019 -1210 1192 63 -257 2660 -1708

wlCF
A1g ,r (T1) -5610 693 899 -271 130 -551 -1412 969

wlCF
A1g ,r (T1, RT! -5147 554 899 -271 130 -551 -1412 969
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l52,4. The self-interaction then leads to a modification of
the crystal-field coefficientsw2 CF

A1g,1 andw4 CF
A1g,1 These modi-

fied coefficients are quoted aswlCF
A1g ,r(T1, RT! in Table III.

In Fig. 5 we show a three-dimensional plot of the crystal-
field, obtained from expression~3.11! with the crystal field
coefficients given in the last line of Table III. Our calcula-
tions indicate that there are three shallow degenerate minima
around thez axis with nV/VCF(Q50)'0.01 at angles
Q50.38 andf5p/2, 7p/6, 11p/6, whereV5(Q,f) are
the polar angles of the long axis of the molecule. Since the
orientational probability distribution is given byP(V)
}exp@2VCF(V)/T# we conclude that there is a precessional
motion of the long axis around thecW direction in the rhom-
bohedral phase. These results agree with molecular-
dynamics simulations.14

If for the time being we assume that the phase transition is
of the second order, we find by Landau theory28,29 that the
transition temperatureTc is given by the solution of the im-
plicit equation

Tc1JFx
~2!~Tc!50. ~3.14!

Herex(2)(T) is the single-particle expectation value

x~2!~T!5^„U2
Eg,4~nW !…2&CF. ~3.15!

We findTc5271 K.

IV. FREE ENERGY

In order to investigate more closely the thermal changes
that accompany the phase transitionsR3̄m→P21

/m, we
have derived the free energy in the rhombohedral phase. Re-
stricting ourselves to the rotational degrees of freedom, and
using the method of Refs. 30 and 31, we find for the Landau
expansion28 of the free energy per molecule

F5F01F ~2!1F ~4!1F ~6!5F01Ah21Bh41Ch6.
~4.1!

Hereh stands for the instantaneous expectation value of the
orientational order-parameter variableU2

Eg,4 @see Eqs.~3.7a!,
~3.7b!#. Using symmetry arguments we can show that the
expansion~4.1! contains only even powers inh. F0 is the
single-particle orientational free energy, and the coefficients
of the expansion are obtained as

A5
1

2 H T

x~2! 1JFJ ,
B5

T

24@x~2!#2 H 32
x~4!

@x~2!#2J , ~4.2!

C5
T

6x~2!H 1

2@x~2!#2
2

3x~4!

8@x~2!#4
1

@x~4!#2

12@x~2!#6
2

x~6!

120@x~2!#5J ,
where

x~2!5^@U2
E,2,s#2&CF;

x~4!5^@U2
E,2,s#4&CF;

x~6!5^@U2
E,2,s#6&CF. ~4.3!

With the crystal-field coefficients from Table IV we
obtain x(2)57.3931023, x(4)52.2431024, x(6)

51.1831025, B522.313105 K, and C51.383107 K.
Since the coefficientB of the fourth-order term is negative,
the phase transition is of first order.28 The discontinuity of
the order parameter at the phase transition is given by

h156A2
B

2C
560.092, ~4.4!

while the transition temperature, obtained from the solution
of B224AC, is T15Tc1nT5285 K ~noticeTc5271 K!.
The latent heat per molecule emitted atT1 when the system
transforms from the rhombohedral to the monoclinic phase is
given by

FIG. 4. Temperature dependence of
^U2

A1g,1&CF in the rhombohedral phase. It corre-
sponds to a change of the orientational crystal
field. With respect to the phase transition to the
monoclinic structurêU2

A1g,1&CF acts as a second-
ary order parameter which exhibits a jump to a
smaller value at the transition, as is also shown
here.

12 738 54A. V. NIKOLAEV AND K. H. MICHEL



nH5T1~S
.2S,!52T1S 2

]F0~T!

]T
1

]F~T!

]T D UT1
5

T1
x~2! h1

21B~T1!h1
41C~T1!h1

6. ~4.5!

HereS. andS, denote the entropy just above and below
T1. Our calculation yieldsnH52.61 kJ mol21. The value is
comparable with experimentally found1,3 3.560.5 kJ
mol21, 3.460.2 kJ mol21, and 2.360.4 kJ mol21 ~Ref. 1,
cited in Ref. 14!. It is also consistent with results of
molecular-dynamics simulations14 giving nH52.560.3 kJ
mol21.

Although we have treated here the transition from the
rhombohedral to the monoclinic phase, we want to mention
that the present potential with parameters from Table I also
describes the transition from the cubic to the rhombohedral
phase. A comparison of the calculated values of the crystal-
field coefficients and ofTc with the values of Ref.12 is given
in Table IV. We observe that a main advantage of the present
potential is that the reduction of the strengthC(1) of the
repulsive potentials which involve intermediate bond inter-
actions leads to a reduction of the crystal field in the mono-
clinic phase. This is illustrated by the values forw2CF

A1g ,1 given
in Table V.

V. LATTICE DISTORTIONS

The orientational ordering at the transition and at lower
temperature in the monoclinic phase is accompanied by a

FIG. 5. The orientational crystal field~in K! of the rhombohedral phase, slightly aboveT15285 K. The polar regions around thez axis
marked by (2) have negative sign~attraction!, the equatorial region marked by (1) has positive sign~repulsion!.

TABLE IV. Crystal-field parameterswl
A1g in K, in the fcc phase

calculated for the present potential and for the potential of Ref. 12.
Critical temperatureTc in K, for the transitionFm3̄m→R3̄m. We
give two columns for the present potential, showing thatTc8 and the
first-order transition temperature (T25Tc81nT) depend strongly
on the actual value of the elastic constantc44

0 ~The other elastic
constants are kept the same as in Ref. 12, that isc11

0 52235 and
c12
0 5950, in K/Å.! a is fcc lattice constant, in Å3.

Present Ref.12

a 14.892 15.0
w4 -348.4 -535.4
w6 2085.3 1794.6
w8 -1091.9 -1353.7
c44
0 875 920 875
Tc8 504 346 457
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distortion of the crystal lattice occupied by the center-of-
mass positions of the C70 molecules. Here we want to inves-
tigate these effects which are a consequence of rotation-
rotation-translation~RRT! coupling.27,32 We consider the
orientational interactionVRR, Eq. ~2.10!, on a deformable
lattice. The centers-of-mass positions are then given@com-
pare with Eq.~2.8!# by

RW ~nW ,l,n!5XW ~nW !1uW ~nW !, ~5.1!

whereuW (nW ) are the lattice displacements. ExpandingVRR in
terms ofuW , we obtain as a linear correction to the rigid lattice
term Eq.~2.10!

VRRT5
1

2(nWnW 8
Viab~nW 2nW 8!Ua~nW !Ub~nW 8!@ui~nW !2ui~nW 8!#,

~5.2!

where a stands for (t,l ) and whereViab is derivative of

Jab(nW 2n8W ) with respect toXi(nW ). Transforming to Fourier
space we find

VRRT5
1

2(pWqW
Viab~qW ,pW !Ua~2qW 2pW !Ub~pW !ui~qW !,

~5.3a!

where

Viab~qW ,pW !5~Nm!21/2(
kW
Viab~kW !cosF S pW 1

qW

2
D •XW ~kW !G

3sinFqW •XW ~kW !

2
G . ~5.3b!

Here we have defined kW 5nW 82nW . The vector
XW (kW )5XW (nW 82nW ) denotes the positions of the 12 nearest
neighbors with respect to the central moleculenW in the rhom-
bohedral lattice. The Fourier transformed displacements are
given by

uW ~qW !5Am

N(
nW

uW ~nW !e2 iqW •XW ~nW !, ~5.4!

wherem is the mass of the C70 molecule. We consider ex-
pression~5.3a! in the long wave limitqW→0 for the lattice
displacements and define the homogeneous strains by

iq jui~qW !

AmN
5e i jd~qW !. ~5.5!

Replacing the rotator functionsUa(6pW ) in expression~5.3a!
by the orientational order parameter

^U2
Eg,4~pW !&5hAN~dpW ,qWF8

1dpW ,2qWF8
!/2, ~5.6!

we obtain for the contribution ofVRRT to the free energy per
molecule

VRRT@h,e#5h2~Lxxexx1Lyyeyy1Lzzezz1Lyzeyz!Vc ,
~5.7!

whereVc is the volume per unit cell. Here we have defined
the coefficients

L i j5
1

2(kW
Viaa~kW !cos@qW F8•X

W ~kW !#XW j~kW !, ~5.8!

wherea5Eg,4. Numerical calculations for these quantities
with the potential parameters of Table I yieldLxx5197,
Lyy5510,Lzz52.84,Lyz520.205, in units K/Å3.

We add to the free energy an elastic term of the rhombo-
hedral crystal

FTT@e#5H 12 c330 ezz
2 1

1

2
c11
0 ~exx

2 1eyy
2 !1c12

0 exxeyy

1~c11
0 2c12

0 !exy
2 1c13

0 ~exx1eyy!ezz

12c44
0 ~exz

2 1eyz
2 !12c14

0 @~exx2eyy!eyz

12exyexz#JVc . ~5.9!

Here ci j
0 are the bare elastic constants in Voigt’s notation.

The bare elastic constantsci j
0 are the elastic constants in

absence of any coupling of the lattice displacements to mo-
lecular rotations.13 The last expression is written for a coor-
dinate system which differs from the one used in Ref.34 by
permutation ofx and y axes. Since we do not know so far
about experimental data on the elastic constants of C70 in the
rhombohedral phase, we have made numerical estimates by
performing a model calculation of theci j

0 . Details of the
calculations and relations between elastic constants and
Lamécoefficients used by Landau and Lifshitz are given in
Appendix B.

The form of expression~5.7! for FRRT@h,e# implies that
only distortions withexxÞ0, eyyÞ0, ezzÞ0, eyzÞ0 occur in
the monoclinic phase, while the other components of the
strain tensor will be zero (exy50, exz50). In principle, posi-
tive values ofL i i , wherei i5xx,yy,zz lead to negative val-
ues ofexx , eyy , ezz, thus giving a tendency to contraction of
the monoclinic unit cell in all directions. However, in the
elastic energy FTT@e# there exists a coupling term,
c13
0 (exx1eyy)ezz, which causes an elongation along thez
axis. As a result, the sign of the distortionezz depends on the
numerical values of the elastic constants.

The remaining nonzero componenteyz of strain tensor
gives rise to a distortion which is not reduced to contraction
or elongation in thex,y,z directions, see Fig. 6. It brings a
shear deformation of the monoclinic unit cell characterized
by the monoclinic angleb:

cosb5u2eyzu. ~5.10!

TABLE V. Partial contribution ofC, D, I centers to the leading
crystal-field coefficientw2 CF

A1g,1 in K.

C,C C,D D,D I ,C I,D I ,I Total

w2 CF
A1g,1 (T15285 K! -2115 -2750 151 -419 -497 20 -5610
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We now give numerical estimates of the strains. The lattice
distortion corresponding to an orientational orderh in the
monoclinic phase is determined by the minimialization con-
ditions of the free energy:

]$FRRT@h,e#1FTT@e#%

]e i j
50, ~5.11!

wherei j5xx,yy,zz andyz. Explicitly we obtain

c11
0 exx1c12

0 eyy1c13
0 ezz12c14

0 eyz1Lxx50,

c11
0 exx1c12

0 eyy1c13
0 ezz22c14

0 eyz1Lyy50,

c33
0 ezz1c13

0 ~exx1eyy!1Lzz50, ~5.12!

4c44
0 eyz12c14

0 ~exx2eyy!1Lyz50,

where we have definedLi j5L i jh
2. With our choice of elas-

tic constants we have solved this system of equations for
e i j and obtained

exx520.0407h2, ezz50.0320h2,

eyy520.1598h2, eyz520.0205h2. ~5.13!

At the phase transition,h2'0.0085. Therefore, for our
choice of elastic constants~Appendix B! we have contrac-
tions in thex,y direction and an elongation in thez direction.
Experimental data forT515 K indicate that there are con-
tractions in all three directions3 with exx
520.0195,eyy520.00496,ezz520.0028, ueyzu50.0045.

Notice that, as we mentioned before, it is possible to obtain a
negative value ofezz if a smaller value of the elastic constant
c13
0 ,14.9 K/Å3 is taken.

Although the calculated values ofe i j are quantitatively
still different from the experimental data at 15 K, the theory
correctly predicts which lattice deformations are affected by
the transition from the rhombohedral to the monoclinic
phase.

In order to improve the agreement with experiment, we
have considered as an additional mechanism the coupling
between orientational modes of rhombohedral symmetry
(A1g) and lattice strains. Initially, this coupling originates
from corresponding rotation-translation~RT! interaction.
However, it should be modified by taking into account a
coupling between two SAF’sS2

A1g,1 in a way which is similar
to the modification of the crystal field described in Sec. III B.
Such a modified rotation-translation~RT! coupling leads to a
free-energy contribution per molecule

FRT@z,e#5z@a~exx1eyy!2bezz#Vc ~5.14!

in the rhombohedral phase. For the coupling parametersa
and b we find 130 K/Å3 and 80 K/Å3, respectively, and
z5^U2

A1g,1& is a thermal expectation value. Moreover,z can
be regarded as the order parameter of the fcc
→rhombohedral phase transition condensing at the transition
temperatureT2'350 K. Since in the disordered phasez50
and in the rhombohedral phasez.0 ~Fig. 4!, it follows from
Eqs.~5.9! and~5.14! that the fcc→rhombohedral phase tran-
sition is accompanied with a decrease ofexx andeyy and an
increase ofezz.

We can calculate values ofz in the monoclinic phase if in
Eqs.~3.13a!, ~3.13b! we consider the orientational molecular
field

VMF~v,h!5VCF~v!1JFhU2
Eg,4~v!, ~5.15!

instead of the crystal fieldVCF(v). If in Eq. ~5.15! we take
h5h1560.092 which corresponds to the value of the pri-
mary order parameter̂U2

Eg,4& just below the temperature
T15285 K of the rhombohedral→monoclinic phase transi-
tion ~see Sec. IV!, we obtainz50.804. Thus at the transition
from the rhombohedral to the monoclinic phase, the quantity
z undergoes a discontinuous decreasenz520.0236 ~see
Fig. 4!. The concomitant changes inexx andeyy are positive
(exx5eyy53.42631024), while there is a negative change
in ezz (ezz522.78231024). In the monoclinic phase, the
quantity z plays the role of a secondary order parameter
which decreases with decreasingT. It is conceivable that the
concomitant decrease ofezz then competes with the increase
of ezz derived from expression~5.13! and ultimately leads to
a negative value at lowT as is found by experiment.3

VI. CONCLUDING REMARKS

Starting from a phenomenological model of microscopic
interactions between neighboring C70 molecules, we have
studied the orientation-dependent intermolecular potential in
the rhombohedral phase. We find that the interactions be-
tween orientational modes of the manifoldl52 ~quadru-
poles! which transform as the irreducible representationEg

FIG. 6. eyz,0 distortion of the monoclinic unit cell. Symbol
% denotes displacement behind the plane of the picture,( denotes
above the plane in the direction perpendicular to the plane. Dis-
placements on the (xy) plane of the picture are shown by arrows.
The distortion preserves the glide reflection plane and screw axis of
P21 /m site symmetry.
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of the rhombohedral site groupD3d drive the transition to a
monoclinic phase. These interactions become attractive at
the F point of the Brillouin zone, the monoclinic phase is
found to have space groupP21

/m, in agreement with
experiment3,20 and computer simulations.21 We have exten-
sively studied the crystal field in the rhombohedral phase
~see Figs. 4 and 5!. In the rhombohedral phase, the molecule
is quasifreely rotating about its long fivefold axis, the aver-
age orientation of the axis is along the rhombohedralc di-
rection ~the @111# direction of the high temperature cubic
phase!. However, a precessional motion of the long axis
about the rhombohedralc axis is found, in agreement with
molecular-dynamics simulations.14

The interactions involving orientational modes belonging
to the manifoldl55 are weaker and we have no theoretical
evidence that these modes are responsible for the transition
to the monoclinic phase, nor that the molecule loses its rota-
tional freedom about the fivefold axis in the monoclinic
phase.

We have studied the Landau free energy in the rhombo-
hedral phase and calculated the latent heat at the transition to
the monoclinic phase. Our numerical value of the latent heat
is in good agreement with experiments1,3 and molecular
dynamics.14 The phase transition is found to be of first order.
We have thoroughly studied the lattice deformations that are
associated with the transition to the monoclinic phase. While
the phase transition is mainly an orientational phenomenon,
the lattice deformations are coupled with primary and sec-
ondary order parameters. The theory accounts qualitatively
for the lattice distortions which have been determined by
x-ray diffraction experiments.3
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APPENDIX A: SYMMETRY ADAPTED FUNCTIONS

Here we first quote some relevant site symmetry adapted
functionsSl

t(V) of the groupD3d . We use the notation of
Ref. 26 and define the functions

Yl
m,c~V!5@Yl

m~V!1Yl
2m~V!#/A2, ~A1!

Yl
m,s~V!52 i @Yl

m~V!2Yl
2m~V!#/A2, ~A2!

For the A1g representation ofD3d we have the functions
Sl
A1g ,r , where

S2
A1g,15Y2

0 , S4
A1g,15Y4

0 , S4
A1g,25Y4

3,s,

S6
A1g,15Y6

0 , S6
A1g,25Y6

3,s, S6
A1g,35Y6

6,c ,

S8
A1g,15Y8

0 , S8
A1g,25Y8

3,s, S8
A1g,35Y8

6,c .

Taking into account relations~A1!, ~A2!, and ~2.4! and ob-
serving thatYl

m*5Yl
2m ~convention of Ref. 26!, we find for

the rotator functions~2.5!:

Ul
A1g ,r~v!5A 4p

2l11
Sl
A1g ,r~v!, ~A3!

wherev5(b,a) are the polar angles of the fivefold molecu-
lar axis.

The relevant symmetry-adapted functions which do not
belong to the unit representation ofD3d belong to the two-
dimensional representationEg or Eu , depending on whether
l is even or odd, respectively. We quote

S2
Eg,15Y2

1,s, S2
Eg,252Y2

1,c , S2
Eg,35Y2

2,c , S2
Eg,452Y2

2,s,

S4
Eg,15Y4

1,s, S4
Eg,252Y4

1,c , S4
Eg,35Y4

2,c , S4
Eg,452Y4

2,s,

S5
Eu,15Y5

1,c , S5
Eu,25Y5

1,s, S5
Eu,35Y5

2,s, S5
Eu,45Y5

2,c ,

S5
Eu,55Y5

4,s, S5
Eu,652Y5

4,c , S5
Eu,75Y5

5,c , S5
Eu,852Y5

5,s.

In the following we will need the rotator function

U2
Eg,4~v!52A4p

5
S2
Eg,4~v!. ~A4!

APPENDIX B: ELASTIC CONSTANTS

Since there are no experimental data on elastic constants
of solid C70 in the rhombohedral phase, we have performed
model calculations to obtain a reasonable estimation of their
values.

As long-range forces due to the attractive van der Waals
term of exp-6 potential, Eq.~3.1!, are believed to be respon-
sible for bare elastic properties, our calculations involved all
neighboring molecules laying inside a sphere centered at a
crystal site with radius of 50 Å, that is more than five
nearest-neighbors’ distances. Thus, 161 shells of sites and
639 molecules were included in the process of calculations.
The estimated influence from outside molecules was less
than 0.09%. Only pair interactions between carbon centers
were counted here with the potential parameters of Table I,
while double and intermediate interaction centers were omit-
ted due to short-range nature of their interaction. We recall
that D and I centers play a significant role in the orienta-
tional interactions among nearest neighbors and are counted
in the terms such asVR, VRT, andVRRT.

For the present calculations all molecules were fixed in
their standard positions and no averages over different orien-
tations were taken into account. Thus, both rotation about
long axis and tilting from thez direction were ignored.

The elastic contribution to the crystal energy was calcu-
lated at 2401 points as a function of distortions imposed by
strain tensor componentsexx ,eyy ,ezz, andeyz . As a result
we obtained valuesacalc55.817 Å, ccalc59.314 Å of the
equilibrium lattice constants close to experimental ones3

a55.846 Å, c59.283 Å. The larger theoretical value ofc
and the smaller value ofa are due to the fact that the tilting
of molecules was not considered. Our equilibrium volume,
819 Å3, is only slightly smaller than the experimentally
found value of 824 Å3 for the rhombohedral phase. For the
calculated elastic constants we obtained the values
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c115550.8, c12572.0, c135108.5, K/Å3,

c14558.0, c335665.0, c445167.5, K/Å3. ~B1!

If we take the values of the elastic constants of C60 given
in Ref. 33 and used in Ref. 12 as a guideline, we conclude
that our calculated values Eq.~B1! are too small, by a factor
5–10.

This situation seems quite typical for molecular-dynamics
calculations with bond-charge models which fail to repro-
duce correct values for the elastic constants.25,33Most likely
there exists a long-range multipole contribution arising from
a slight redistribution of electric charge inside the C70 mol-
ecule, which is not included in pair exp-6 potential. On the
other hand, the results on C60 of Ref. 33 have been obtained
within a unified model which takes into account tight-
binding potential for the intramolecular interaction. Assum-
ing that the omitted long-range interactions are somehow
proportional to our potential for theC-C interactions and

taking into account the estimated values of the elastic con-
stants for the disordered phase of C70, we took values of the
bare elastic constants that are 6 times larger than those given
in Eq. ~B1!:

c11
0 53305, c12

0 5432, c13
0 5651, K/Å3,

c14
0 5348, c33

0 53990, c44
0 51005, K/Å3, ~B2!

c66
0 5 1

2 ~c11
0 2c12

0 !51436.5, K/Å3.

Finally we give relations between elastic constants and
Lamécoefficients34

c11
0 54ljh;jh12ljj;hh , c14

0 522ljj;jz , c66
0 52lhh;jj ,

c11
0 54ljh;jh22ljj;hh , c33

0 5lzz;zz,

c13
0 52ljh;zz, c44

0 52ljz;hz .

*Permanent Address: Institute of Physical Chemistry of RAS,
117915, Moscow, Leninskii prospect 31, Russia.

1G.B.M. Vaughan, P.A. Heiney, J.E. Fischer, D.E. Luzzi, D.A.
Ricketts-Foot, A.R. McGhie, Y.W. Hui, A.L. Smith, D.E. Cox,
W.J. Romanov, B.H. Allen, N. Coustel, J.P. McCauley, Jr., and
A.B. Smith III, Science254, 1350~1992!.

2M.A. Verheijen, H. Meekes, G. Meijer, P. Bennema, J.L. de Boer,
S. van Smaalen, G. van Tendeloo, S. Amelinckx, S. Muto, J. van
Landuyt, Chem. Phys.166, 287 ~1992!.

3G.B.M. Vaughan, P.A. Heiney, D.E. Cox, J.E. Fischer, D.E.
Luzzi, A.R. McGhie, A.L. Smith, R.M. Strongin, M.A. Cichy,
and A.B. Smith III, Chem. Phys.178, 599 ~1993!.

4C. Christides, I.M. Thomas, T.J.S. Dennis, and K. Prassides, Eu-
rophys. Lett.22, 611 ~1993!.

5C. Christides, T.J.S. Dennis, K. Prassides, R.L. Cappelletti, D.A.
Neumann, and J.R.D. Copley, Phys. Rev. B49, 2897~1994!.

6C. Meingast, F. Gugenberger, G. Roth, M. Halus˘ka, and H. Kuz-
many, Z. Phys. B95, 67 ~1994!.

7A.R. McGhie, J.E. Fischer, P.A. Heiney, P.W. Stephens, R.L.
Cappelletti, D.A. Neumann, W.H. Mueller, H. Mohn, and H.-U.
ter Meer, Phys. Rev. B49, 12 614~1994!.

8R. Sachidanandam and A.B. Harris, Phys. Rev. Lett.67, 1467
~1991!; A.B. Harris and R. Sachidanandam, Phys. Rev. B46,
4944~1992!; P.A. Heiney, J.E. Fischer, A.R. McGhie, W.J. Ro-
manov, A.M. Denenstein, J.P. McCauley, Jr., A.B. Smith III,
and D.E. Cox, Phys. Rev. Lett.67, 1468~1991!.

9W.I.F. David, R.M. Ibberson, J.C. Matthewman, K. Prassides,
T.J.S. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, and D.R.M.
Walton, Nature~London! 353, 147 ~1991!.

10K.H. Michel, J.R.D. Copley, and D.A. Neumann, Phys. Rev. Lett.
68, 2929~1992!.

11R. Sachidanandam and A.B. Harris, Phys. Rev. B49, 2878
~1994!.

12A.K. Callebaut and K.H. Michel, Phys. Rev. B52, 15 279~1995!.
13R.M. Lynden-Bell and K.H. Michel, Rev. Mod. Phys.66, 721

~1994!.

14M. Sprik, A. Cheng, and M.L. Klein, Phys. Rev. Lett.69, 1660
~1992!.

15J. Baker, P.W. Fowler, P. Lazzeretti, M. Malagoli, and R. Zanasi,
Chem. Phys. Lett.184, 182 ~1991!.

16R. Sachidanandam, T.C. Lubenski, and A.B. Harris, Phys. Rev. B
51, 12 380~1995!.

17W. Que, D.F. Agterberg, and M.B. Walker, Phys. Rev. B47,
13 074~1993!.

18D.F. Agterberg and M.B. Walker, Phys. Rev. B48, 5630~1993!.
19D.F. Agterberg, W. Que, and M.B. Walker, Chem. Phys. Lett.

213, 207 ~1993!.
20PH.M. van Loosdrecht, M.A. Verheijen, H. Meekes, P.J.M. van

Bentum, and G. Meijer, Phys. Rev. B47, 7610~1993!.
21B.J. Nelissen, P.H.M. van Loosdrecht, M.A. Verheijen, A. van

der Avoird, and G. Meijer, Chem. Phys. Lett.207, 343 ~1993!.
22H.M. James and T.A. Keenan, J. Chem. Phys.31, 12 ~1959!.
23M. Yvinec and R.M. Pick, J. Phys.~Paris! 41, 1045~1980!.
24K.H. Michel and K. Parlinski, Phys. Rev. B31, 1823~1985!.
25A. Cheng and M.L. Klein, Phys. Rev. B45, 1889 ~1992!; M.

Sprik, A. Cheng, and M.L. Klein, J. Phys. Chem.96, 2027
~1992!.

26C.J. Bradley and A.P. Cracknell,The Mathematical Theory of
Symmetry in Solids~Clarendon, Oxford, 1972!.

27K.H. Michel and J.M. Rowe, Phys. Rev. B32, 5818~1985!; 32,
5827 ~1985!.

28L.D. Landau, Phys. Z. Sowjetunion11, 26 545~1937!.
29J.-C. Toledano and P. Toledano,The Landau theory of Phase

Transitions~World Scientific, Singapore, 1987!.
30K.H. Michel and E. Courtens, Phys. Rev. B23, 513 ~1981!.
31K.H. Michel and K. Parlinski, Phys. Rev. B31, 1823~1985!.
32D. Lamoen and K.H. Michel, Phys. Rev. B48, 807 ~1993!.
33J. Yu, L. Bi, R.K. Kalia, and P. Vashishta, Phys. Rev. B49, 5008

~1994!.
34L.D. Landau and E.M. Lifshitz,Course of Theoretical Physics,

Theory of elasticity~Pergamon, Bristol, 1975!, Vol. 7.

54 12 743MICROSCOPIC THEORY OF THE RHOMBOHEDRAL . . .


