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Microscopic theory of the rhombohedral phase and transition to the monoclinic phase
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Starting from a model of microscopic interactions betweef @olecules, we have developed a theory
which describes the orientational dynamics and its coupling to lattice displacements in the rhombohedral phase
of C, fullerite. The Landau free energy is calculated. We obtain a first-order phase transition to a monoclinic
structure with the space grolg2, /m. The transition is driven by the condensation of orientational quadru-
poles at theé= point of the Brillouin zone of the rhombohedral lattice. We find no evidence that the monoclinic
structure is connected with the freezing in of orientations around the fivefold molecular axis. We calculate the
lattice strains that are associated with the transition to the monoclinic structure. The theory is compared with
a range of experimental data on the phase transit®0163-18206)07742-9

[. INTRODUCTION interactions (=2) remain the strongest ones driving the
transition, while the interactions connected witk5 are
Solid C;, (Ref. 1) undergoes a sequence of structuralnegligible and unimportant. Our results are consistent with
phase transitions.* At high temperature=350 K, solid all experimental data on the phase transition from the rhom-
Co forms an orientationally disordered phaseith face- bohedral to the monoclinic phase.

centered-cubicfcc) lattice (space grouff-m3m). Depending
on the treatment of the sample, also a hexagonal close-
packed structure exist$*®’ Upon cooling from the fcc
phase, a transition to a rhombohedral phésgace group
R3m) occurs, followed by a transition to a monoclinic phase In the present section we will derive the interaction po-
around 295 K&~* Unlike in solid Cg, where the transition tential for a system oN C-, molecules in the rhombohedral
from theFm3m to the Pa3m phase is essentially a phenom- phase. A convenient way to treat the orientation-dependent
enon of orientational orderiniy;° while the centers of mass properties of nonlinear molecules in crystals is to use rotator
of the molecules still occupy an fcc lattice, the transitionfunctions?*~2* The rotator functions take into account the
from the cubic to the rhombohedral phase in soligy 8 due ~ symmetry of the molecule and of the site. Rotator functions
to a coupling of orientational quadrupoles'bjg symmetry for the cubic phase of solid g were given in Ref. 12. Here
to trigonal shear strains:*? Such a bilinear coupling which Wwe first extend this concept to the rhombohedral phase.
is characteristic for ferroelastic transitiohisis favored by We start with a molecule in its standard orientatbmith
the elongated shape of the,omolecule. Important insight respect to a rectangular coordinate system. The molecule is
can be gained by molecular-dynamics simulations in solidcentered at the origin, its fivefold axis is takenzaaxis, the
C+0.* Molecular dynamics shows that in the rhombohedral(x,y) plane is a symmetry plane. The Cartesian coordinates
phase the molecules are on the average oriented along0d the molecule, taken as a rigid body, are specified in
[111] direction of the former cubic phase and that the unitRef.15. We classify the atoralso calledC centers of the
cell is stretched along this direction. It is also found that themolecule in(00)) planes. We consider five groups of atoms
rhombohedral phase is followed by a monoclinic ph4se labeled by an index (A=1-5, as shown in Fig.)1 There
lower temperature. are ten atoms in the equatorial plari@. =1)=0 , ten atoms
The C,, molecule has symmeti® s, with a long fivefold in each of the planesz(\), A=2,3 and five atoms in each
axis!® As was noticed before, in the rhombohedral phase thef the planestz(\), A =4,5. To describe the intermolecular
C,, molecules effectively behave as solid objectsnf,  interaction due to charge-density variations@cC, bondg®
symmetry performing fast rotations about long aXe¥'®  we introduce “double bond” centers of interactidnalled
The phase transition to the monoclinic phase was initiallyD center$ and “intermediate bond” centergalled| cen-
associated with orientational ordering of,£molecules ters. There are fiveD centers in each of the planesz(6)
where the rotations around the fivefold axis are frozeh-in.and in planes+z(7). Finally there are fivé centers in each
This conclusion prompted several investigations where rotaef the planestz(8) and ten in each planez(9) (see also
tor functions belonging to the manifold=5 were chosen as Table | of Ref.12. The centers in the layers are labeled by
order parameters for the monoclinic phas&®However, this  indicesv(\), the correspondent polar coordinates of the cen-
approach predicts a space groBpnm?® while the experi- ters arg[d(\),Q’(»(\)], whered is distance from the ori-
mentally identified symmetry group B2,/m.320-21 gin to the center and wher@'=(6',¢') are the polar
In this paper we propose a theory of the transition baseangles. We then calculate the molecular structure
on a microscopic model which indicates that quadrupolacoefficients®

II. ORIENTATIONAL COORDINATES AND
INTERACTION POTENTIAL
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FIG. 2. The nearest neighbors of g¢nolecule(0) in rhom-
FIG. 1. The Gy molecules withC (atomicA=1-5), D (double  bohedral phase. Indices 4-9 refer to sites laying on the base plane,
bond\=6,7), andl (intermediate\ =8,9) interaction centers. 1-3 sites lay on the plane situated above the base plane, and 10-12,
below the base plane. Lattice constaatandc are indicated.
n(n)
c"(N)= E YN(Q (v(N)). (2.2 system of axes. Then the molecule is tilted away from the
v=l standard position by a rotatidR( ), w stands for the Euler
angles which specify the orientation of the molecule with

Heren(\) is the number of centers in group Symmetry of
(\) group Sy Y respect to crystal fixed system of axes. The corresponding

the molecule implies that the coefficier8(\) are different

from zero form=0,+5,+10, ... and {—m) evenit512Fgr  fotator functions are then given by

=0, 2, 4, 6, and 8, only the coefficiemg()\) are different

from zero. They are quoted in Table | of Ref.12. Since UT(w,N)=cX(\)Y, D ™(w)al™. 2.3
m=0, the azimuthal angle is irrelevant, the molecule is m

spinning around its fivefold axis. . m ) ]
In the rhombohedral phase, the site symmetry is describedere the coeff|C|§nt%z| refer to the site point groupsg.
by the point groupDsy. The corresponding symmetry The Wigner matrixD;™ is given by

adapted function§SAF's) are tabulated in Ref. 26:
47
om _(_ m m *
D/ (w)=(-1) \/_2|+1Y' (B,a)*. (2.4

Here B8 and o are polar angles of the fivefold axis of the

Herer=(I',p,d), wherel  refers to the irreducible represen- molecule. As we have seen the third Euler angle ¢,
tations of the grouD4, p labels the subspaces bfif I'  which specifies the rotation of the molecule about the five-
occurs more than once for a givens labels the components fold axis, is irrelevant. It should be noted that rotator func-
of I'. tions with| =5 would restore the azimutha} dependence.

The site symmetry adapted functions are defined with reAs we will see later, the corresponding contributions to the
spect to the crystal fixed system of axes shown in Fig. 2. Inntermolecular potential are negligibly small and can be
particular thez axis coincides with the threefold axis of omitted. In the following it will be convenient to use rotator
D34. In order to relate the site symmetry and the molecularfunctions which are independent on the group indeand
symmetry, we construct the rotator functions by following hence we define
the procedure of Ref. 12. We start from a situation where the
molecular system of axes coincides with the crystal fixed

|
S(@)= 2 Y(Q)a. (2.2

Ul(w)=2, DM™(w)a". (2.5
TABLE I. Interaction potential parameters betwe@rD,| cen- m
ters of interaction.

The coefficients:?()\) which occur inU{(w,\) will then be

units CC CD ClI DD DI 1] counted by the expansion coefficients of the intermolecular
potential (see below. In Appendix A we quote relevant ro-
cly, 10° K 6.24 6.24 0.84 6.24 0.84 0.114 tator functions of the groupP .
c?, At 36 34 35 32 33 34 The total intermolecular potential is given by a sum of
By, 10°KxA® 424 0 0 0 0 0 potentials between interaction centers belonging to different

molecules
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The potentialV(n,\,»;n’,\’,»’) depends on the distance
r between the center(\) on moleculen and the center
»'(\') on moleculen’. One has

r=|R(n,\,»)—R(n",\',v")], 2.7

where the position of the interaction cente¢\) on the

nth molecule is given by

R(N,\,»)=X(n)+d(@(n,\)). (2.9
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X (AN, w0 N, p)S9P(Q,).
(2.15

The functionqulg”’ and UlAlg"’ are quoted in Appendix A.
The crystal field is the potential experienced by a molecule at

site n, while its neighbors at sites’ are taken in spherical
approximation. Here we restrict ourselves to the 12 nearest
neighbors in the rhombohedral latticgee Fig. 2

In the next section we will study collective phenomena. It
is useful to rewrite the orientation-orientation dependent in-
teraction in Fourier space. Defining

HereX(n) is the center-of-mass position of the molecule and

d specifies the position of the centef\) with respect to the
molecular center of mass. He&év(ﬁ,)\)) has polar coordi-

natesd(\),Q(v(n,\)) and depends on the orientation of the

molecule. The position§X(n)} form a rigid rhombohedral
lattice. Expanding the potentid in terms of rotator func-
tions, we obtain

V=VRR4 VR (2.9

Here VRR refers to the rotation-rotatiofRR) dependent part
of the intermolecular potential andR is the crystal-field
potential. Explicitly one has

VRR——E > 2 I (M= n)UT@QM)U] (@),
nn’ 77
(2.10

Heren stands forw(n). The indexr(7') refers to irreducible
representations ddzy4 which are different from the unit rep-
resentation. The coefficients are given by

”,(ﬁ n "= 2 v”, n And N )c|()\)cl,()\ ),
(2.11

where
v,ﬁt'(ﬁ,x;ﬁ',w)zfdnvf dQ, V(N w0’ N, v
XS(Q,)S] (Q (2.12

The crystal field is given by a sum of single-particle
terms:

VR=

> > > wieute (),
P

no |

(2.13

where

12
witeP= 3 > Yl Hwi e (AN’ )
n"=1 A\’ (2 14)
with

1 .o .
=2 e 9 XWui(n),

N= (2.19

Uu(q)=

||’ (Q) E J||r n n )elq X(n) X<n )] (217)

whereﬁ is the wave vector, we get for the rotation-rotation
interaction

=—EZE

n 7'

T @UIaU, (—q). (218

Ill. ORIENTATIONAL PHASE TRANSITION

In the following we will investigate whether the
orientation-dependent interactiok's=VRR+V in the rhom-
bohedral phase lead to an orientational phase transition. Our
aim is to predict the structure of the low-symmetry phase.

We start from a phenomenological model of the intermo-
lecular potential which is based on the interactions between
the centers of typ&C,D, and| on neighboring molecules.
The interaction is given by a sum of repulsive Born-Mayer
and attractive van der Waals potential:

c
Cav

exp(—C ) =By 8,
(3.1

where the distanceis given by expressiofR.7). The poten-
tial parameter@ilx), , Cii), , andB,, are specified in Table

I. The potential used here is somewhat different from the one
used in Ref. 12. In particular we have reduced the coeffi-
cientsCV) for the repulsive interactions involvingcenters

and we have, on the other hand, retained an attractive van der
Waals part only forC centers. For a comparison with the
results of Ref. 12, we refer the reader to the end of Sec. IV.

V(ﬁ,)\,v;r?,)\',v')

A. Rotation-rotation interaction VRR

We have calculated the interaction coefficients
377 (n—n") of the intermolecular potentil®R by means of
expressiong2.11) and (2.12. Here again we restrict our-
selves to the 12 nearest neighbﬁr‘sof a molecule centered

atn in the rhombohedral lattice. The relevant SAF'sEyf
and E, symmetry are given in Appendix A. The angular
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TABLE Il. Partial contribution ofC,D,| centers to the constant 2
Je, in K. Qa(0p)= 2 (el )5 (0, (3.5
=
C,C C,D D,D I,C I,D I, total

where the subscrigi stands for=, F', F”. The six points in

the Brillouin zone correspond to physically equivalent states
(domaing. Sinceeg: is particularly simple, we will retain
integrations are done numerically. We find that by far thehereafterQ,(qg/) as the order parameter variable. The con-
largest matrix elements are obtained for the quadrupoladensation of this order parameter leads to a monoclinic struc-
SAF's $;9°=Y3¢ and S;9*=—Y2*, which form a two- ture. The symmetry lowering can be represented by the fol-

dimensional representatidg,, of the groupDs4. We have lowing diagram:

estimated that the interaction coefficientg (n—n’) for B

=5 by a factor 1.5-5 smaller than the corresponding coef- R3m: [aF,;Qg(aF,)z NY25#0]—P, /m. (3.6
ficients of quadrupolar interactions calculated with SAF’'s !
859’3 and 859'4. We take this fact as an indication that rota-
tions of the Gy molecule about its fivefold axis still remain
allowed. A freezing in of molecular orientations about the
fivefold axis is not required for the low-symmetry phase
which turns out to have a monoclinic structusze below: (U5#(n)) = ncogge - X(N)), (3.7a

In the following we will only retain contributions from

SAF’s 859’3 and 859'4 to the rotation-rotation interaction

VRR expression(2.19. We simplify the notations by writing = \/E<Y2,s(ﬁ)> (3.7
S5, wherea=1 stands for E4,3) anda=2 for (E4,4). We 572 ' '

then study the eigenvalues of the<2 matrix J»,(q) with

elements734(q) as a function of in the Brillouin zone of ~ Where the rotator functio59“ is given by Eq.(Ad). As
the rhombohedral lattice. The largest negative eigenvalue i®llows from Eq. (3.7a, <U§g'4(ﬁ)> changes from+ 7 to
found at theF point of the Brillouin zone and we will denote  _ , for neighboring sites. Taking into account the angular
this eigenvalue byl and the corresponding eigenvector by dependence of('ﬁ's(ﬁ), we show in Fig. 3 the breaking of

er with elementser(|qe): rhombohedral symmetry and formation of a new unit cell in
- - the monoclinic phase. There are six molecules per unit cell.
T2 Q)= Jrer. (3.2

We obtainJ=—36 580 K, the contributions from the dif- B. Crystal field VR
ferent interaction centers are listed in Table Il. There are six L .
points in Brillouin zone giving the same eigenvalde. _In order to study more quantitatively the p.hase'transmon
They are connected with thfe point by symmetry operations R3M— P, /m, we need to know the crystal fiel" in the
of C5,C2, and! (inversion of the point groupDsq: rhombohedral phase. Starting from the interaction Bql)
with parameters specified in Table I, we have calculated the
N T 2w\ coefficientaNlAlg”J by means of Eq92.14) and(2.15, using
Fo= J3a' 3a’3c)’ the SAF'sSlAlg’P of Appendix A. The crystal field resulting
from the leading coefficientvv/;19’1=—26464 K, is enor-
i mously strong. Such a strong crystal field prevents any tilting
’ of the long molecular axis away from the threefold trigonal
axis and hence precludes a phase transition to a low-
( - T 2 77) symmetry structure. The reason for the strong crystal field is
F'. | ——,—==,=]. (3.3 an artefact of our calculation. For elongated molecules like
V3a' 3a’3c C-,o0n arigid lattice, the treatment of the 12 neighbors of a

Herea=5.846 A andc=9.283 A are lattice constants of the CeNtral molecule as spherésee Sec. Jlis a too crude ap-

rhombohedral lattick(see Fig. 2 The normalized eigenvec- Proximation. Indeed by averaging the positions of interaction
centers over spheres with radii corresponding to their dis-

Jr -10017 -19595 -8581 847 782 -16 -36580

Here the index stands for a thermal expectation valugis
the order-parameter amplitude. In real space we have

F': ={0

27 2
'3a’ 3¢

tors are i

tances from the center of the molecule, the repulsive forces
J3 J3 between neighboring molecules on a rigid lattice are overes-

> 0 > timated. We observe that molecular-dynamics simulatbns
z RS- Il - are not subject to these restrictions. Going one step beyond

eF ’ eF’ ’ eF" ’ (34) . . . . .

1 1 1 this approximation, we replace the neighboring molecules by

2 2 qguadrupoles 5/2\19,1: Y9 and calculate the coefficients

Arg.piA1gl > 2y
and the corresponding normal coordinates of orientations ard 2°  ~ (N—n’) by means of Eqs(2.1]) andﬁ(2.12). We
given by obtain for the corresponding crystal field at site
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O PR O RO e SRR (VAR TS
\ n'
O // N \ © (3.10
O Q7% \, O . _ Arg ot
/ \/ \ 7 S We observe that)cr is independent ofi’” and thatw; ¢ is
G'___'® /\ Oo( p"'—_'@ . > . .
\ ~ /_® independent on (equivalence of rhombohedral lattice sjtes
O \ O—-\-7 11 / o Including the contributions Ed3.9), we replace the crystal-
O\ // O field expression(2.13 by

O O----0 O ]
Ver= 2 §|‘, > widePute (), (3.1
n P

where

0 o, %}) =) (B) Argp_  Argep oo ALg
Lo o l ol gt —wis e e
y (b _Cb Sb o <> The thermal average in E¢3.10 is found by solving self-

0 0 a) O i 0 consistently the equation
S D O F O
0 O § O: <Uglg'1>c1::%7f dweXF[_VCF(w)/T]Ulz-\lg’l(w)’
Q Q Q QN (3.133
X

z=f dwexg — Ve 0)/T], (3.13b

FIG. 3. The transition from rhombohedrah) to monoclinic wheredw=sinBdBda, w=(B,a) being the polar angles of
(B) lattice and formation of the monoclinic primitive unit cell. Pro- the long molecular axis Calculatiﬁ'gAlg’l by means of Eqgs
jection on the k,y) plane; labels 1, 11, and 5 are shown for com- ) 2 - )
parison with Fig. 2. The drawn symbols indicate the main transfor{(3-10, (3.133, and (3.130, we obtain a positive value,
mation properties of the corresponding orientational crystal field20 854 K, forT=285 K. Hence it follows from Eq(3.19
Circles (A) represent the equivalent crystal field for every site in that the leading crystal-field coefficient is strongly reduced,
the rhombohedral phase. In the monoclinic pha3g the breaking W?égF‘lz—5610 K instead oi/vglg’l. This reduction of the
of Dyq site symmetry is shown by drawing positive lobesWf*  crystal field means that the system will become more suscep-
*Y3® function at different lattice sites. Solid lines confine the tible to orientational fluctuations which lower the rhombohe-
monpclinic u_nit cells B). Different crystal _planes are _represented dral symmetry and lead to a monoclinic phase of space group
by different size of symbols. The screw axiashed line in the base  p, /m, The crystal-field coefficients are quoted in Table Ill.

plane and glide reflection planédotted and dashed lin®f sym- . S
metry groupP2, /m are shown for the monoclinic phasB), They are slightly temgerflturg dependent. As an |nd|ca_t|on
the T dependence gfU,¢") ¢ in the rhombohedral phase is

shown in Fig. 4. The nature of the avera(geglg’l)cng is
also discussed in Sec. V.
R R As an additional mechanism which modifies the crystal
xulAlg‘p(n)U’glg’l(n’) (3.8 field, we have taken into account the orientational self-
] o A1, - . interactionV*® of the C;o molecule with the lattice deforma-
In the mean-field approximation we replade*®(n’) by its  tions. Self-interactions are a consequence of bilinear
crystal-field average and rewrite express(8r8) as rotation-translation(RT) coupling. These effects have been
studied thoroughly for the fcc phases of KGRef.27 and
> JlAég'P?Alg'l(ﬁ_ﬁf)UlAlg~P(ﬁ)<uglg'1(ﬁ/)>m: of C, (Ref.12. For the present work, we have extended the
n' method to the rhombohedral phase of,CWithout giving
the details of the calculations, we only mention that the de-

composition of the square of the rotator functions,3}?,
1

12
3 Vigrtetionn =3 e tedn-n)
n’ n’

=W e Pyte (), (3.9
where where a=(Eg4,3) and Eg,4), contains the functionbl,Alg’

TABLE lll. Crystal-field coefficients, in K T,=285 K).

(1.p) 2,9 4,9 CHY CHY 4.2 6.2 6.3 8.3
whis ? 26464 1712 2109  -1463 66  -294  -4071 2677
Whot (T) 20854  -1019  -1210 1192 63 257 2660  -1708
whis? (T)) -5610 693 899 271 130 551  -1412 969

Wide? (Ty, RT) -5147 554 899 -271 130 -551 -1412 969
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0.830 1
. MM)
. FIG. 4. Temperature dependence of
k) (U’;lg’l)CF in the rhombohedral phase. It corre-
~ oslo L i sponds to a change of the orientational crystal
g‘w ' field. With respect to the phase transition to the
= —9 monoclinic structure{Ung’l)CF acts as a second-
v 0.800 - : i ary order parameter which exhibits a jump to a
| smaller value at the transition, as is also shown
: here.
0.790 : _
monoclinic | rhombohedral phase fec phase
o phase I~ I~ I~
| |
T 1 | I 1 i3
240.0 2700 T, 3000 330.0 Ty 360.0 390.0
T (K)

|=2,4. The self-interaction then leads to a modification ofHere z stands for the instantaneous expectation value of the

the crystal-field coel‘ficientﬂ\/g\lc%1 and W4Al€,’:1 These modi- orientational order-parameter variakhhjgg‘4 [see Eqgs(3.73,
fied coefficients are quoted agAég ?(T,, RT) in Table III. (3.7b]. Using symmetry arguments we can show that the

In Fig. 5 we show a three-dimensional plot of the crystal-expansion(4.1) contains only even powers ip. Fq is the
field, obtained from expressio(8.11) with the crystal field smgle-partlcle_0r|entat|0na_l free energy, and the coefficients
coefficients given in the last line of Table Ill. Our calcula- Of the expansion are obtained as
tions indicate that there are three shallow degenerate minima
around thez axis with AV/VH(®=0)~0.01 at angles A:E[ L+J
©=0.38 and¢= /2, 77/6, 117/6, whereQ=(0,¢) are 2 x@ " °F
the polar angles of the long axis of the molecule. Since the
orientational probability distribution is given by () _ T x4
cexd —Vcer(Q)/T] we conclude that there is a precessional B= 24 x(?7? 3= [x®72]"
motion of the long axis around the direction in the rhom-
bohedral phase. These results agree with molecular- T 1 3x4 [x(#7? x(®) ]

4.2

dynamics simulation¥? ~ x| 2[xP)2” g[x ] + 122~ 12qx 275
If for the time being we assume that the phase transition is

of the second order, we find by Landau théBr that the ~ where

transition temperaturé. is given by the solution of the im-

plicit equation x@=([U5%*%) cr;
T+ Jex@(Ty)=0. (3.14 X4 =([US*1%) ¢k
2 . . . .
Herex(®(T) is the single-particle expectation value X(6)=([U§’2'S]6>CF. 4.3
x@(T) = (U (n))?) e (3.19 With the crystal-field coefficients from Table IV we
_ obtain x®=7.39x10"%, x®#=2.24x10"%  x©®
We find T,=271 K. =1.18x10°%, B=-2.31x10° K, and C=1.38x10’ K.
Since the coefficienB of the fourth-order term is negative,
IV. FREE ENERGY the phase transition is of first ord& The discontinuity of

. . the order parameter at the phase transition is given by
In order to investigate more closely the thermal changes

that accompany the phase transitioR8m— P, /m, we B
have derived the free energy in the rhombohedral phase. Re- m=*\ - 2C
stricting ourselves to the rotational degrees of freedom, and

using the method of Refs. 30 and 31, we find for the Landawvhile the transition temperature, obtained from the solution

=+0.092, (4.4

expansiof? of the free energy per molecule of B2—4AC, is T,=T.+AT=285 K (notice T,=271 K).
The latent heat per molecule emittedTatwhen the system
F=Fo+F@+FY+FO=F;+A»?+By*+C°. transforms from the rnombohedral to the monoclinic phase is

(4.2 given by
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FIG. 5. The orientational crystal fielgh K) of the rhombohedral phase, slightly abolvg=285 K. The polar regions around tkeaxis
marked by ) have negative sigfattraction, the equatorial region marked by-( has positive sigrirepulsion.

AH:Tl(S>_S<):_T1

IFo(T) aF(T))
9T aT 1

T 2 4 6
=@M +B(Ty) 7"+ C(T1) n1°. (4.5

TABLE IV. Crystal-field parameter\xiallAlg in K, in the fcc phase

Here S” and S© denote the entropy just above and below
T,. Our calculation yields\H=2.61 kJ mol . The value is
comparable with experimentally fouhdl 3.5+0.5 kJ
mol 1, 3.4+ 0.2 kJ mol%, and 2.3-0.4 kJ mol* (Ref. 1,
cited in Ref. 14. It is also consistent with results of
mole(iular-dynamics simulatiotsgiving AH=2.5+0.3 kJ
mol ™~

Although we have treated here the transition from the

calculated for the present potential and for the potential of Ref. 12rhombohedral to the monoclinic phase, we want to mention

Critical temperaturd .. in K, for the transitionFm3m— R3m. We

give two columns for the present potential, showing fiaand the
first-order transition temperaturel {=T;+ AT) depend strongly
on the actual value of the elastic constaflj (The other elastic
constants are kept the same as in Ref. 12, thaf js2235 and
c2,=950, in K/A) a is fcc lattice constant, in &

Present Ref.12
a 14.892 15.0
Wy -348.4 -535.4
We 2085.3 1794.6
Wg -1091.9 -1353.7
cos 875 920 875
T, 504 346 457

that the present potential with parameters from Table | also
describes the transition from the cubic to the rhombohedral
phase. A comparison of the calculated values of the crystal-
field coefficients and of . with the values of Ref.12 is given

in Table IV. We observe that a main advantage of the present
potential is that the reduction of the strength® of the
repulsive potentials which involve intermediate bond inter-
actions leads to a reduction of the crystal field in the mono-
clinic phase. This is illustrated by the values Wm?églz’l given

in Table V.

V. LATTICE DISTORTIONS

The orientational ordering at the transition and at lower
temperature in the monoclinic phase is accompanied by a
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TABLE V. Partial contribution ofC, D, | centers to the leading <uEg,4(5)>: 7]\/—(& — 59 -2 (5.6)
-q .

crystal-field coeff|C|entN2 CF in K. 2 Podr

we obtain for the contribution 0¢RR" to the free energy per

cc ¢cb b,b I, I,D I,l Total
molecule

whish (T,=285 K) -2115 -2750 151 -419 -497 20 -5610

VRRT[ n,€]= 772(Axx6xx+ A

+ A€, Ayz‘fyz)vc )

5.
distortion of the crystal lattice occupied by the center-of- &7
mass positions of the £ molecules. Here we want to inves- whereV, is the volume per unit cell. Here we have defined
tigate these effects which are a consequence of rotatiorthe coefficients
rotation-translation(RRT) coupling?’? We consider the
orientational interactionV®R Eq. (2.10, on a deformable R e . L
lattice. The centers-of-mass positions are then gicem- Aijzzz Vi“(k)cog e/ - X(k) X ( k), (5.9
pare with Eq.(2.8)] by «

yy€yy

where a=E4,4. Numerical calculations for these quantities
with the potential parameters of Table | yield,,=197,

- o o : Ay,=510,A,,=2.84,A,,= —0.205, in units K/&.
vy 2z
whereu(n) are the lattice displacements. Expandifg® in We add to the free energy an elastic term of the rhombo-

terms ofu, we obtain as a linear correction to the rigid lattice hegral crystal
term Eq.(2.10

R(N,\,»)=X(n)+u(n), (5.1)

1
1 o N N N R TT, 0
VRRTZEZ Viaﬁ(n_n!)ua(n)uﬁ(n/)[ui(n)_ui(n/)], F [6] C33€ZZ+ Cll(EXX+€ )+C126XXEyy
nn’
(5.2 + (C?l— ng) e)2<y+ ng( Exxt €yy) €17
where aéstands for ¢,1) and l/vhereVi“ﬁ is derivative of +2¢9,(€2,+ 6)212) +2¢9 (exx— €yy) €z
J*f(n—n") with respect toX;(n). Transforming to Fourier
space we find + 2606k [ Ve (5.9
VRRT= _E V(a4 p)U(—a-pUi(p)ui(9), Here c are the bare elastic constants in Voigt's notation.

(533 The bare elastic constant§ are the elastic constants in
absence of any coupling of the lattice displacements to mo-

where lecular rotations? The last expression is written for a coor-
dinate system which differs from the one used in Ref.34 by
permutation ofx andy axes. Since we do not know so far
about experimental data on the elastic constantsgirCthe
rhombohedral phase, we have made numerical estimates by
performing a model calculation of thqoj. Details of the
(5.3b calculations and relations between elastic constants and

Lame coefficients used by Landau and Lifshitz are given in

Here we have defined k=n'—n. The vector AppendixB. _ - o
)Z(;?)=)?(ﬁ’—ﬁ) denotes the positions of the 12 nearest The form of expressions.7) for F™ [ ,e] implies that

. . - only distortions withe,,# 0, €,,# 0, €,,#70, €,,# 0 occur in
neighbors with respect to the central moleculi® the rhom- y Exx cyy €227 0 €yz

bohedral lattice. The Fouri ¢ d displ the monoclinic phase, while the other components of the
gi?/e?r L‘; attice. The Fourier transformed displacements arg iy tensor will be zeroe,,=0, €,,=0). In principle, posi-

tive values ofA;; , whereii =xx,yy,zzlead to negative val-

ues ofe,y, €y, €,,, thus giving a tendency to contraction of
a(q)= \[2 n)eia-X (5.4) the r_nonoclmlc unit cell in all d|rect|ons. Howeyer, in the
eéastrc energy F''[e] there exists a coupling term,
. . Ci13(€xxt €yy) €57, Which causes an elongation along the
wherem is the mass of the ¢ molecrile. We consider ex- axis. As ayryesult, the sign of the distortiep, depends on the
pression(5.38 in the long wave limitg—0 for the lattice  numerical values of the elastic constants.

Vef(a,p)=(Nm) Y2 vrﬁ(fbcos{ + 5] X(x)

q-X(x)
|

X sin

displacements and define the homogeneous strains by The remaining nonzero componesy, of strain tensor
gives rise to a distortion which is not reduced to contraction
Iq, (Q) - or elongation in the,y,z directions, see Fig. 6. It brings a
m € 6(9)- (5.9 shear deformation of the monoclinic unit cell characterized

by the monoclinic angles:

Replacing the rotator functiordg*(+ f)) in expression5.33
by the orientational order parameter coB=|2¢,|. (5.10



Notice that, as we mentioned before, it is possible to obtain a
negative value o§,, if a smaller value of the elastic constant
c,<14.9 K/A® is taken.
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(@ Although the calculated values @f; are quantitatively
still different from the experimental data at 15 K, the theory
correctly predicts which lattice deformations are affected by
the transition from the rhombohedral to the monoclinic
phase.

In order to improve the agreement with experiment, we
have considered as an additional mechanism the coupling
between orientational modes of rhombohedral symmetry

0 (A1g) and lattice strains. Initially, this coupling originates
from corresponding rotation-translatiofRT) interaction.
However, it should be modified by taking into account a

@ coupling between two SAF'S’;lg’l in a way which is similar

Y a

& & @

to the modification of the crystal field described in Sec. Il B.
Such a modified rotation-translatigRT) coupling leads to a
free-energy contribution per molecule

FRT[gaf]:g[a(fxx+ 6yy)_ﬁfzﬂvc (5.19

in the rhombohedral phase. For the coupling parameters
and B we find 130 K/A3 and 80 K/&, respectively, and
S S §=(U§19‘1> is a thermal expectation value. Moreovércan

FIG. 6. E¥z<0 distortion qf the monoclinic unlt. cell. Symbol be regarded as the order parameter of the fcc
® denotes displacement behind the plane of the pictrdenotes ) mhohedral phase transition condensing at the transition
above the plane in the direction perpendlcular to the plane. D'SfemperatureTZ%SSO K. Since in the disordered phase0
placements on thexfy) plane of the picture are shown by arrows. nd in the rhombohedral phage 0 (Fig. 4), it follows from
The distortion preserves the glide reflection plane and screw axis : phag 9. %), 1 WS
P2, /m site symmetry. _q_s.(5_.9) and(5.14)_ that 'Fhe fce=rhombohedral phase tran-

sition is accompanied with a decreaseegf and €,, and an

® & & &

&

We now give numerical estimates of the strains. The latticdNCréase ofez,. _ . .

distortion corresponding to an orientational orderin the We can calculate values gfin the monoclinic phase if in

monoclinic phase is determined by the minimialization con-quz-(3-13a' (3.13h we consider the orientational molecular
ie

ditions of the free energy:

AF™Tn el +FTely 51 Vie(o,m)=Ved0)+IenU5o%w), (5.1
J€ij ' ' instead of the crystal fielc((w). If in Eq. (5.15 we take

n=n,=*=0.092 which corresponds to the value of the pri-
mary order paramete{rUEQ’A} just below the temperature

whereij =xx,yy,zz andyz. Explicitly we obtain

Chiexxt C(l)zeyy"' Cla€zzt 2024eyz+ Lyx=0, T,=285 K of the rhombohedrat monoclinic phase transi-
o o o o tion (see Sec. Y, we obtain/=0.804. Thus at the transition.
C11€6xxT C12€yy+ C13€,,— 2C14€y,+ Lyy=0, from the rhombohedral to the monoclinic phase, the quantity
{ undergoes a discontinuous decredsé= —0.0236 (see
Coa€2,+ Col €xxt €yy) + L2,=0, (512 Fig. 4. The concomitant changes &, ande,, are positive
(€xx= €yy=3.426X 10 %), while there is a negative change
AcQ€y,+ 200 €xx— €yy) + Ly,=0, in €,, (e,,=—2.782<10"%). In the monoclinic phase, the

where we have defined,; = A;; »2. With our choice of elas- qugntity ¢ plays th? role of a sec'ondary prder parameter
tic constants we have Jsolvejd this system of equations fo\fvhICh dgcreases with decreasinglt is Conce!vable t.hat the
¢ and obtained concomitant decrease ef, then competes with the increase
& of €,, derived from expressio(b.13 and ultimately leads to
€= —0.0407%, €,,=0.0320/2, a negative value at low as is found by experimenit.

€yy=—0.15987%, €,,= —0.0205,°. (5.13 VI. CONCLUDING REMARKS

At the phase transitionz;?~0.0085. Therefore, for our Starting from a phenomenological model of microscopic
choice of elastic constanf®\ppendix B we have contrac- interactions between neighboring,£molecules, we have
tions in thex,y direction and an elongation in tlzedirection.  studied the orientation-dependent intermolecular potential in
Experimental data folf =15 K indicate that there are con- the rhombohedral phase. We find that the interactions be-
tractons in all three directioAs with €, tween orientational modes of the manifolé-2 (quadru-
=—0.0195, ¢yy,= —0.00496, ¢,,~ — 0.0028, |¢,,| =0.0045.  poleg which transform as the irreducible representatign
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of the rhombohedral site groupsqy drive the transition to a A A
monoclinic phase. These interactions become attractive at U (w)= 1/ 2|+13|Alg’p(w), (A3)
the F point of the Brillouin zone, the monoclinic phase is
found to have space group, /m, in agreement with \herew=(g,a) are the polar angles of the fivefold molecu-
experiment?® and computer simulatiorfs.We have exten- lar axis.
sively studied the crystal field in the rhombohedral phase The relevant symmetry-adapted functions which do not
(see Figs. 4 and)5In the rhombohedral phase, the moleculebelong to the unit representation bfy belong to the two-
is quasifreely rotating about its long fivefold axis, the aver-dimensional representatidgy or E,,, depending on whether
age orientation of the axis is along the rhombohedrdi- | is even or odd, respectively. We quote
rection (the [111] direction of the high temperature cubic
phas¢. However, a precessional motion of the long axisgie'=vyls g-o?= —ylc ghed=y2¢ gGlot— _y2s

.. . . ’ 2 2 2 2 2 2
about the rhombohedral axis is found, in agreement with
molecular-dynamics simulatiori.

The interactions involving orientational modes belonging
to the manifoldl =5 are weaker and we have no theoretical
evidence that these modes are responsible for the transition SE”’1= Y&©, SE“’2=
to the monoclinic phase, nor that the molecule loses its rota-
trl)cr)]r;ille'freedom about the fivefold axis in the monoclinic SE”’E’:Y“'S, SEU,GZ_Y‘LC, SE“’7=Y§'C, SEU,SZ_Y%S.

We have studied the Landau free energy in the rhomboy,,
hedral phase and calculated the latent heat at the transition to

the monoclinic phase. Our numerical value of the latent heat
E, 4, AT £ 4
U9 (w)=— 5 S,9(w).

Eql_\ls Eq2_  \lc Eq3_\2¢ Eqd_  \/2s
spot=vis, sef=—vie, siet=yie, gt _y2s,

—_v2s Eyd_\s2¢C
=Yz5", S =Y,

1s E,.3
Yis, s ‘

5

the following we will need the rotator function

is in good agreement with experimehtsand molecular

dynamicst* The phase transition is found to be of first order.

We have thoroughly studied the lattice deformations that are

associated with _the tr_ansiti_on to the _mono_clinic phase. While APPENDIX B: ELASTIC CONSTANTS
the phase transition is mainly an orientational phenomenon,

the lattice deformations are coupled with primary and sec- Since there are no experimental data on elastic constants
ondary order parameters. The theory accounts qualitativelgf solid C;q in the rhombohedral phase, we have performed
for the lattice distortions which have been determined bymodel calculations to obtain a reasonable estimation of their

(Ad)

x-ray diffraction experiment3. values.
As long-range forces due to the attractive van der Waals
ACKNOWLEDGMENTS term of exp-6 potential, Eq3.1), are believed to be respon-

) ] ] ~ sible for bare elastic properties, our calculations involved all
This work has been financially supported by the Sciencgeighboring molecules laying inside a sphere centered at a
Foundation and by the Federal Services for Scientific, Techcrystal site with radius of 50 A, that is more than five

nical and Cultural Affairs of BelgiuniProject No. I[UAP 48,  nearest-neighbors’ distances. Thus, 161 shells of sites and

characterization of materials 639 molecules were included in the process of calculations.
The estimated influence from outside molecules was less
APPENDIX A: SYMMETRY ADAPTED FUNCTIONS than 0.09%. Only pair interactions between carbon centers

H first i | t sit irv adaot \é{ere counted here with the potential parameters of Table I,
ere we nrst quote some relevant site symmetry adapteg e qouble and intermediate interaction centers were omit-

functions§'(Q2) of the groupDsq. We use the notation of o4 gye to short-range nature of their interaction. We recall
Ref. 26 and define the functions that D and| centers play a significant role in the orienta-
_ tional interactions among nearest neighbors and are counted
m,c _ m m
YR =[YQ) + Y ()12, (AL) " in the terms such a8, VRT, andVRRT.
ms com m For the present calculations all molecules were fixed in
Y Q)= —i[Y(Q)-Y, (Q)]/\/i (A2)  their standard positions and no averages over different orien-
For the A, representation oDy we have the functions tations were tqun into account. T_hus, both rotation about
qug,p long axis and tilting from the direction were ignored.
, Where . -
The elastic contribution to the crystal energy was calcu-
lated at 2401 points as a function of distortions imposed by
191 /0 1g1_ /0 192_ /35
S? =Yo, S{: =Ya, Sﬁ T=YeT strain tensor components, €, ,€,,, ande,,. As a result
we obtained valuesi,=5.817 A, c,=9.314 A of the

5219’1= Ye, 8219’2= Yg®, 8219'3= Ye©, equilibrium lattice constants close to experimental dnes
a=5.846 A, c=9.283 A. The larger theoretical value of
5219’1: Yo, 5219’2: y3s, Sg\lg’3= Yse. and the smaller value & are due to the fact that the tilting

of molecules was not considered. Our equilibrium volume,
Taking into account relation§A1), (A2), and(2.4) and ob- 819 A3, is only slightly smaller than the experimentally
serving thaty[™ =Y, ™ (convention of Ref. 2§ we find for ~ found value of 824 & for the rhombohedral phase. For the
the rotator functiong2.5): calculated elastic constants we obtained the values
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€11=550.8, ¢;,=72.0, c;3=108.5, K/A, taking into account the estimated values of the elastic con-
stants for the disordered phase of,Cwe took values of the
€14=58.0, C33=665.0, c,,=167.5, K/A. (B1) bare elastic constants that are 6 times larger than those given

in Eq. (BL):
If we take the values of the elastic constants @f Given 0 0 0 3
in Ref. 33 and used in Ref. 12 as a guideline, we conclude €1:=3305, c7,=432, ci3=651, K/~
that our calculated values E(B1) are too small, by a factor 0 0 0
5-10. c),=348, c2;=3990, c3,=1005, K/A, (B2
This situation seems quite typical for molecular-dynamics o 1.0 o
calculations with bond-charge models which fail to repro- Coe=2(C31—C1p)=1436.5, KI/R.

duce correct values for the elastic const&nts.Most likely _ _ _ _

there exists a long-range multipole contribution arising from  Finally we give relations between elastic constants and
a slight redistribution of electric charge inside thg,@nol- Lame coefficients

ecule, which is not included in pair exp-6 potential. On the 0 0

other hand, the results onggof Ref. 33 have been obtained Cli=MemenT2Neeinns C1a= ~2Nggerr Coo= 2N e
within a unified model which takes into account tight-

L ; . . ; c2 =4n — 2\ c2=x
binding potential for the intramolecular interaction. Assum- 11 Emén egqnr C33T Mzzzz
ing that the omitted long-range interactions are somehow 0 0
proportional to our potential for th€-C interactions and C13=2Ngpzz0 Cas=2Ngz -
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