|   | 
Details
   web
Records
Author Bafekry, A.; Mortazavi, B.; Faraji, M.; Shahrokhi, M.; Shafique, A.; Jappor, H.R.; Nguyen, C.; Ghergherehchi, M.; Feghhi, S.A.H.
Title Ab initio prediction of semiconductivity in a novel two-dimensional Sb₂X₃ (X= S, Se, Te) monolayers with orthorhombic structure Type A1 Journal article
Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk
Volume 11 Issue 1 Pages 10366
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Sb2S3 and Sb2Se3 are well-known layered bulk structures with weak van der Waals interactions. In this work we explore the atomic lattice, dynamical stability, electronic and optical properties of Sb2S3, Sb2Se3 and Sb2Te3 monolayers using the density functional theory simulations. Molecular dynamics and phonon dispersion results show the desirable thermal and dynamical stability of studied nanosheets. On the basis of HSE06 and PBE/GGA functionals, we show that all the considered novel monolayers are semiconductors. Using the HSE06 functional the electronic bandgap of Sb2S3, Sb2Se3 and Sb2Te3 monolayers are predicted to be 2.15, 1.35 and 1.37 eV, respectively. Optical simulations show that the first absorption coefficient peak for Sb2S3, Sb2Se3 and Sb2Te3 monolayers along in-plane polarization is suitable for the absorption of the visible and IR range of light. Interestingly, optically anisotropic character along planar directions can be desirable for polarization-sensitive photodetectors. Furthermore, we systematically investigate the electrical transport properties with combined first-principles and Boltzmann transport theory calculations. At optimal doping concentration, we found the considerable larger power factor values of 2.69, 4.91, and 5.45 for hole-doped Sb2S3, Sb2Se3, and Sb2Te3, respectively. This study highlights the bright prospect for the application of Sb2S3, Sb2Se3 and Sb2Te3 nanosheets in novel electronic, optical and energy conversion systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000656961400019 Publication Date 2021-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.259
Call Number UA @ admin @ c:irua:179188 Serial 6965
Permanent link to this record
 

 
Author Connolly, M.R.; Milošević, M.V.; Bending, S.J.; Clem, J.R.; Tamegai, T.
Title Continuum vs. discrete flux behaviour in large mesoscopic Bi2Sr2CaCu2O8+\delta disks Type A1 Journal article
Year 2009 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 85 Issue 1 Pages 17008,1-17008,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Scanning Hall probe and local Hall magnetometry measurements have been used to investigate flux distributions in large mesoscopic superconducting disks with sizes that lie near the crossover between the bulk and mesoscopic vortex regimes. Results obtained by directly mapping the magnetic induction profiles of the disks at different applied fields can be quite successfully fitted to analytic models which assume a continuous distribution of flux in the sample. At low fields, however, we do observe clear signatures of the underlying discrete vortex structure and can resolve the characteristic mesoscopic compression of vortex clusters in increasing magnetic fields. Even at higher fields, where single-vortex resolution is lost, we are still able to track configurational changes in the vortex patterns, since competing vortex orders impose unmistakable signatures on “local” magnetisation curves as a function of the applied field. Our observations are in excellent agreement with molecular-dynamics numerical simulations which lead us to a natural definition of the lengthscale for the crossover between discrete and continuum behaviours in our system.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000263692500029 Publication Date 2009-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 17 Open Access
Notes Approved Most recent IF: 1.957; 2009 IF: 2.893
Call Number UA @ lucian @ c:irua:76306 Serial 495
Permanent link to this record
 

 
Author Curran, P.J.; Desoky, W.M.; Milošević, M.V.; Chaves, A.; Laloe, J.-B.; Moodera, J.S.; Bending, S.J.
Title Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 15569
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above T-c. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000363306000002 Publication Date 2015-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 12 Open Access
Notes ; P.J.C. and S.J.B. acknowledge support from EPSRC in the UK under grant number EP/J010626/1 and the NanoSC COST Action MP-1201. M.V.M. thanks the Research Foundation-Flanders (FWO) and CAPES Brazil. A.C. acknowledges the financial support of CNPq, under the PRONEX/FUNCAP and PQ programs. J.-B.L. and J.S.M. acknowledge ONR Grant N00014-06-01-0235. ; Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number UA @ lucian @ c:irua:129450 Serial 4248
Permanent link to this record
 

 
Author Yu, H.; Kopach, A.; Misko, V.R.; Vasylenko, A.A.; Makarov, D.; Marchesoni, F.; Nori, F.; Baraban, L.; Cuniberti, G.
Title Confined Catalytic Janus Swimmers in a Crowded Channel: Geometry-Driven Rectification Transients and Directional Locking Type A1 Journal article
Year 2016 Publication Small Abbreviated Journal Small
Volume 12 Issue 12 Pages 5882-5890
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Self-propelled Janus particles, acting as microscopic vehicles, have the potential to perform complex tasks on a microscopic scale, suitable, e.g., for environmental applications, on-chip chemical information processing, or in vivo drug delivery. Development of these smart nanodevices requires a better understanding of how synthetic swimmers move in crowded and confined environments that mimic actual biosystems, e.g., network of blood vessels. Here, the dynamics of self-propelled Janus particles interacting with catalytically passive silica beads in a narrow channel is studied both experimentally and through numerical simulations. Upon varying the area density of the silica beads and the width of the channel, active transport reveals a number of intriguing properties, which range from distinct bulk and boundary-free diffusivity at low densities, to directional “locking” and channel “unclogging” at higher densities, whereby a Janus swimmer is capable of transporting large clusters of passive particles.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000389403900010 Publication Date 2016-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 14 Open Access
Notes ; H.Y., A.K., and L.B. contributed equally to this work. This work was funded in part by the European Union (ERDF) and the Free State of Saxony via the ESF project InnoMedTec, the DFG cluster for Excellence, the Center for Advancing Electronics Dresden (CfAED), and via the European Research Council under the European Union's Seventh Framework program (FP7/2007-2013)/ERC grant agreement no. 306277. V.R.M. and A.A.V. acknowledge support from the Odysseus Program of the Flemish Government and the FWO-VI. F.N. is partially supported by the RIKEN iTHES Project, the MURI Center for Dynamic Magneto-Optics via the AFOSR Grant No. FA9550-14-1-0040, the IMPACT program of the JST, and a Grant-in-Aid for the Scientific Research (A). ; Approved Most recent IF: 8.643
Call Number UA @ lucian @ c:irua:140256 Serial 4453
Permanent link to this record
 

 
Author Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.S.; Ho, C.H.; Yan, J.; Ogletree, D.F.; Aloni, S.; Ji, J.; Li, S.; Li, J.; Peeters, F.M.; Wu, J.;
Title Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 3252
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Semiconducting transition metal dichalcogenides consist of monolayers held together by weak forces where the layers are electronically and vibrationally coupled. Isolated monolayers show changes in electronic structure and lattice vibration energies, including a transition from indirect to direct bandgap. Here we present a new member of the family, rhenium disulphide (ReS2), where such variation is absent and bulk behaves as electronically and vibrationally decoupled monolayers stacked together. From bulk to monolayers, ReS2 remains direct bandgap and its Raman spectrum shows no dependence on the number of layers. Interlayer decoupling is further demonstrated by the insensitivity of the optical absorption and Raman spectrum to interlayer distance modulated by hydrostatic pressure. Theoretical calculations attribute the decoupling to Peierls distortion of the 1T structure of ReS2, which prevents ordered stacking and minimizes the interlayer overlap of wavefunctions. Such vanishing interlayer coupling enables probing of two-dimensional-like systems without the need for monolayers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332666700010 Publication Date 2014-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 806 Open Access
Notes ; This work was supported by the United States Department of Energy Early Career Award DE-FG02-11ER46796. The high pressure part of this work was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under National Science Foundation Cooperative Agreement EAR 11-577758. The electron microscopy and nano-Auger measurements were supported by the user programme at the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract no. DE-AC02-05CH11231. S. A. gratefully acknowledges Dr Virginia Altoe of the Molecular Foundry for help with the TEM data acquisition and analysis. J.L. acknowledges support from the Natural Science Foundation of China for Distinguished Young Scholar (grant nos. 60925016 and 91233120). Y.-S.H. and C.-H. H. acknowledge support from the National Science Council of Taiwan under project nos. NSC 100-2112-M-011-001-MY3 and NSC 101-2221-E-011-052-MY3. H. S. was supported by the FWO Pegasus Marie Curie Long Fellowship programme. The DFT work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Centre. ; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:119247 Serial 2192
Permanent link to this record
 

 
Author Korkmaz, Y.A.; Bulutay, C.; Sevik, C.
Title k · p parametrization and linear and circular dichroism in strained monolayer (Janus) transition metal dichalcogenides from first-principles Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 13 Pages 7439-7450
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Semiconductor monolayer transition metal dichalcogenides (TMDs) have brought a new paradigm by introducing optically addressable valley degree of freedom. Concomitantly, their high flexibility constitutes a unique platform that links optics to mechanics via valleytronics. With the intention to expedite the research in this direction, we investigated ten TMDs, namely MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2, MoSSe, MoSeTe, WSSe, and WSeTe, which particularly includes their so-called janus types (JTMDs). First, we obtained their electronic band structures using regular and hybrid density functional theory (DFT) calculations in the presence of the spin-orbit coupling and biaxial or uniaxial strain. Our DFT results indicated that against the expectations based on their reported piezoelectric behavior, JTMDs typically interpolated between the standard band properties of the constituent TMDs without producing a novel feature. Next, by fitting to our DFT data we generated both spinless and spinful k center dot p parameter sets which are quite accurate over the K valley where the optical activity occurs. As an important application of this parametrization, we considered the circular and linear dichroism under strain. Among the studied (J)TMDs, WTe2 stood out with its largest linear dichroism under uniaxial strain because of its narrower band gap and large K valley uniaxial deformation potential. This led us to suggest WTe2 monolayer membranes for optical polarization-based strain measurements, or conversely, as strain tunable optical polarizers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000639044400045 Publication Date 2021-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:178264 Serial 8136
Permanent link to this record
 

 
Author Chaves, A.; Azadani, J.G.; Alsalman, H.; da Costa, D.R.; Frisenda, R.; Chaves, A.J.; Song, S.H.; Kim, Y.D.; He, D.; Zhou, J.; Castellanos-Gomez, A.; Peeters, F.M.; Liu, Z.; Hinkle, C.L.; Oh, S.-H.; Ye, P.D.; Koester, S.J.; Lee, Y.H.; Avouris, P.; Wang, X.; Low, T.
Title Bandgap engineering of two-dimensional semiconductor materials Type A1 Journal article
Year 2020 Publication npj 2D Materials and Applications Abbreviated Journal
Volume 4 Issue 1 Pages 29-21
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Semiconductors are the basis of many vital technologies such as electronics, computing, communications, optoelectronics, and sensing. Modern semiconductor technology can trace its origins to the invention of the point contact transistor in 1947. This demonstration paved the way for the development of discrete and integrated semiconductor devices and circuits that has helped to build a modern society where semiconductors are ubiquitous components of everyday life. A key property that determines the semiconductor electrical and optical properties is the bandgap. Beyond graphene, recently discovered two-dimensional (2D) materials possess semiconducting bandgaps ranging from the terahertz and mid-infrared in bilayer graphene and black phosphorus, visible in transition metal dichalcogenides, to the ultraviolet in hexagonal boron nitride. In particular, these 2D materials were demonstrated to exhibit highly tunable bandgaps, achieved via the control of layers number, heterostructuring, strain engineering, chemical doping, alloying, intercalation, substrate engineering, as well as an external electric field. We provide a review of the basic physical principles of these various techniques on the engineering of quasi-particle and optical bandgaps, their bandgap tunability, potentials and limitations in practical realization in future 2D device technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000565588500001 Publication Date 2020-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 329 Open Access
Notes ; Discussions and interactions with D.R. Reichman, F. Tavazza, N.M.R. Peres, and K. Choudhary are gratefully acknowledged. A.C. acknowledges financial support by CNPq, through the PRONEX/FUNCAP and PQ programs. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 755655, ERCStG 2017 project 2D-TOPSENSE). Computational support from the Minnesota Supercomputing Institute (MSI) and EU Graphene Flagship funding (Grant Graphene Core 2, 785219) is acknowledged. R.F. acknowledges support from the Netherlands Organization for Scientific Research (NWO) through the research program Rubicon with project number 680-50-1515. D.H., J.Z., and X.W. acknowledge support by National Natural Science Foundation of China 61734003, 61521001, 61704073, 51861145202, and 61851401, and National Key Basic Research Program of China 2015CB921600 and 2018YFB2200500. J.Z. and Z.L. acknowledge support by RG7/18, MOE2017-T2-2-136, MOE2018-T3-1-002, and A*Star QTE program. S.H.S. and Y.H.L. acknowledge the support from IBS-R011-D1. Y.D.K. is supported by Samsung Research and Incubation Funding Center of Samsung Electronics under Project Number SRFC-TB1803-04. S.J.K acknowledges financial support by the National Science Foundation (NSF), under award DMR-1921629. T.L. and J.G.A. acknowledge funding support from NSF/DMREF under Grant Agreement No. 1921629. S.-H.O. acknowledges support from the U.S. National Science Foundation (NSF ECCS 1809723) and Samsung Global Research Outreach (GRO) project. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:172069 Serial 6459
Permanent link to this record
 

 
Author Yorulmaz, U.; Šabani, D.; Sevik, C.; Milošević, M.V.
Title Goodenough-Kanamori-Anderson high-temperature ferromagnetism in tetragonal transition-metal xenes Type A1 Journal article
Year 2024 Publication 2D materials Abbreviated Journal
Volume 11 Issue 3 Pages 035013-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Seminal Goodenough-Kanamori-Anderson (GKA) rules provide an inceptive understanding of the superexchange interaction of two magnetic metal ions bridged with an anion, and suggest fostered ferromagnetic interaction for orthogonal bridging bonds. However, there are no examples of two-dimensional (2D) materials with structure that optimizes the GKA arguments towards enhanced ferromagnetism and its critical temperature. Here we reveal that an ideally planar GKA ferromagnetism is indeed stable in selected tetragonal transition-metal xenes (tTMXs), with Curie temperature above 300 K found in CrC and MnC. We provide the general orbitally-resolved analysis of magnetic interactions that supports the claims and sheds light at the mechanisms dominating the magnetic exchange process in these structures. Furthermore, we propose the set of three GKA-like rules that will guarantee room temperature ferromagetnism. With recent advent of epitaxially-grown tetragonal 2D materials, our findings earmark tTMXs for facilitated spintronic and magnonic applications, or as a desirable magnetic constituent of functional 2D heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001208053200001 Publication Date 2024-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205464 Serial 9153
Permanent link to this record
 

 
Author Pandey, T.; Peeters, F.M.; Milošević, M.V.
Title High thermoelectric figure of merit in p-type Mg₃Si₂Te₆: role of multi-valley bands and high anharmonicity Type A1 Journal article
Year 2023 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal
Volume 11 Issue 33 Pages 11185-11194
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Silicon-based materials are attractive for thermoelectric applications due to their thermal stability, chemical inertness, and natural abundance of silicon. Here, using a combination of first-principles and Boltzmann transport calculations we report the thermoelectric properties of the recently synthesized compound Mg3Si2Te6. Our analysis reveals that Mg3Si2Te6 is a direct bandgap semiconductor with a bandgap of 1.6 eV. The combination of heavy and light valence bands, along with a high valley degeneracy, results in a large power factor under p-type doping. We also find that Mg is weakly bonded both within and between the layers, leading to low phonon group velocities. The vibrations of the Mg atoms are localized and make a significant contribution to phonon-phonon scattering. This high anharmonicity, coupled with low phonon group velocity, results in a low lattice thermal conductivity of & kappa;(l) = 0.5 W m(-1) K-1 at room temperature, along the cross-plane direction. Combining excellent electronic transport properties and low & kappa;(l), p-type Mg3Si2Te6 achieves figure-of-merit (zT) values greater than 1 at temperatures above 600 K. Specifically, a zT of 2.0 is found at 900 K along the cross-plane direction. Our findings highlight the importance of structural complexity and chemical bonding in electronic and phonon transport, providing guiding insights for further design of Si-based thermoelectrics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001041124900001 Publication Date 2023-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.4; 2023 IF: 5.256
Call Number UA @ admin @ c:irua:198296 Serial 8821
Permanent link to this record
 

 
Author Yang, W.; Misko, V.R.; Tempère, J.; Kong, M.; Peeters, F.M.
Title Artificial living crystals in confined environment Type A1 Journal article
Year 2017 Publication Physical Review E Abbreviated Journal Phys Rev E
Volume 95 Issue 6 Pages 062602
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract (up) Similar to the spontaneous formation of colonies of bacteria, flocks of birds, or schools of fish, “living crystals” can be formed by artificial self-propelled particles such as Janus colloids. Unlike usual solids, these “crystals” are far from thermodynamic equilibrium. They fluctuate in time forming a crystalline structure, breaking apart and re-forming again. We propose a method to stabilize living crystals by applying a weak confinement potential that does not suppress the ability of the particles to perform self-propelled motion, but it stabilizes the structure and shape of the dynamical clusters. This gives rise to such configurations of living crystals as “living shells” formed by Janus colloids. Moreover, the shape of the stable living clusters can be controlled by tuning the potential strength. Our proposal can be verified experimentally with either artificial microswimmers such as Janus colloids, or with living active matter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000402667600006 Publication Date 2017-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 10 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Research Foundation (FWO-Vl) (Belgium), the Flemish Research Foundation (through Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N), and the Research Fund of the University of Antwerp. W.Y. acknowledges the support from the National Natural Science Foundation of China under Grants No. 11204199 and No. 51135007, the China Scholarship Council, the 131 project and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and a project under Grant No. 2016-096 by Shanxi Scholarship Council of China. ; Approved Most recent IF: 2.366
Call Number UA @ lucian @ c:irua:144205 Serial 4641
Permanent link to this record
 

 
Author Pham, A.-T.; Sorée, B.; Magnus, W.; Jungemann, C.; Meinerzhagen, B.; Pourtois, G.
Title Quantum simulations of electrostatics in Si cylindrical junctionless nanowire nFETs and pFETs with a homogeneous channel including strain and arbitrary crystallographic orientations Type A1 Journal article
Year 2012 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 71 Issue Pages 30-36
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) Simulation results of electrostatics in Si cylindrical junctionless nanowire transistors with a homogenous channel are presented. Junctionless transistors including strain and arbitrary crystallographic orientations are studied. Size quantization effects are simulated by self-consistent solutions of the Poisson and Schrodinger equations. The 6 x 6 k.p method is employed for the calculation of the valence subband structure in a junctionless nanowire pFET. The influence of stress/strain and crystallographic channel orientation on to the electrostatics in terms of subband structure, charge density, and C-V curve is systematically studied. (C) 2011 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000303033800007 Publication Date 2011-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.58 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 1.58; 2012 IF: 1.482
Call Number UA @ lucian @ c:irua:98245 Serial 2786
Permanent link to this record
 

 
Author Bakalov, P.; Esfahani, D.N.; Covaci, L.; Peeters, F.M.; Tempere, J.; Locquet, J.-P.
Title Electric-field-driven Mott metal-insulator transition in correlated thin films : an inhomogeneous dynamical mean-field theory approach Type A1 Journal article
Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 165112
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract (up) Simulations are carried out based on the dynamical mean-field theory (DMFT) in order to investigate the properties of correlated thin films for various values of the chemical potential, temperature, interaction strength, and applied transverse electric field. Application of a sufficiently strong field to a thin film at half filling leads to the appearance of conducting regions near the surfaces of the film, whereas in doped slabs the application of a field leads to a conductivity enhancement on one side of the film and a gradual transition to the insulating state on the opposite side. In addition to the inhomogeneous DMFT, a local density approximation (LDA) is considered in which the particle density n, quasiparticle residue Z, and spectral weight at the Fermi level A(ω=0) of each layer are approximated by a homogeneous bulk environment. A systematic comparison between the two approaches reveals that the less expensive LDA results are in good agreement with the DMFT approach, except close to the metal-to-insulator transition points and in the layers immediately at the film surfaces. LDA values for n are overall more reliable than those for Z and A(ω=0). The hysteretic behavior (memory effect) characteristic of the bulk doping driven Mott transition persists in the slab.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000373572700002 Publication Date 2016-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; This work was partially funded by the Flemish Fund for Scientific Research (FWO Belgium) under FWO Grant No. G.0520.10 and the joint FWF (Austria)-FWO Grant No. GOG6616N, and by the SITOGA FP7 project. Most of the calculations were performed on KU Leuven's ThinKing HPC cluster provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:132872 Serial 4167
Permanent link to this record
 

 
Author Brosens, F.; Magnus, W.
Title Newtonian trajectories : a powerful tool for solving quantum dynamics Type A1 Journal article
Year 2010 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 150 Issue 43/44 Pages 2102-2105
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract (up) Since Ehrenfests theorem, the role and importance of classical paths in quantum dynamics have been examined by several means. Along this line, we show that the classical equations of motion provide a solution to quantum dynamics, if appropriately incorporated into the Wigner distribution function, exactly reformulated in a type of Boltzmann equation. Also the quantum-mechanical features of the canonical ensemble can be studied in this framework of Newtonian dynamics, if the initial distribution function is appropriately constructed from the statistical operator.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000284251700006 Publication Date 2010-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 7 Open Access
Notes ; The authors thank J.T. Devreese and J. Tempere for interesting and helpful discussions, and, in particular, L.F. Lemmens for several valuable suggestions. One of the authors (F.B.) acknowledges the FWO projects G.0115.06 and G.0365.08 as well as the WOG project WO.033.09N, for financial support. ; Approved Most recent IF: 1.554; 2010 IF: 1.981
Call Number UA @ lucian @ c:irua:85795 Serial 2338
Permanent link to this record
 

 
Author Chen, Y.; Hong-Yu, W.; Peeters, F.M.; Shanenko, A.A.
Title Quantum-size effects and thermal response of anti-Kramer-Pesch vortex core Type A1 Journal article
Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 27 Issue 27 Pages 125701
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Since the 1960's it has been well known that the basic superconductive quantities can exhibit oscillations as functions of the thickness (diameter) in superconducting nanofilms (nanowires) due to the size quantization of the electronic spectrum. However, very little is known about the effects of quantum confinement on the microscopic properties of vortices. Based on a numerical solution to the Bogoliubov-de Gennes equations, we study the quantum-size oscillations of the vortex core resulting from the sequential interchange of the Kramer-Pesch and anti-Kramer-Pesch regimes with changing nanocylinder radius. The physics behind the anti-Kramer-Pesch anomaly is displayed by utilizing a semi-analytical Anderson approximate solution. We also demonstrate that the anti-Kramer-Pesch vortex core is robust against thermal smearing and results in a distinctive two-maxima structure in the local density of states, which can be used to identify the existence of the anti-Kramer-Pesch vortex.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000351294700018 Publication Date 2015-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 4 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. NSFC-11304134, the Flemish Science Foundation (FWO-Vl), and the Methusalem program. AAS acknowledges the support of the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). WHY acknowledges the support of Scientific Research Fund of Zhejiang Provincial Education Department (Y201120994). ; Approved Most recent IF: 2.649; 2015 IF: 2.346
Call Number c:irua:125460 Serial 2787
Permanent link to this record
 

 
Author Yu, Y.; Chen, X.; Liu, X.; Li, J.; Sanyal, B.; Kong, X.; Peeters, F.M.; Li, L.
Title Ferromagnetism with in-plane magnetization, Dirac spin-gapless semiconducting properties, and tunable topological states in two-dimensional rare-earth metal dinitrides Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 2 Pages 024407
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Since the successful synthesis of bulk single crystals MoN2 and ReN2, which have a layered structure, transition-metal dinitrides have attracted considerable attention in recent years. Here, we focus on rare-earth metal (Rem) elements, and propose seven stable Rem dinitride monolayers with a 1T structure, namely, 1T-RemN2. We use first-principles calculations, and find that these monolayers have a ferromagnetic ground state with in-plane magnetization. Without spin-orbit coupling (SOC), the band structures are spin-polarized with Dirac points at the Fermi level. Remarkably, the 1T-LuN2 monolayer exhibits an isotropic magnetocrystalline anisotropy energy in the xy plane with in-plane magnetization, indicating easy tunability of the magnetization direction. When rotating the magnetization vector in the xy plane, we propose a model that accurately describes the variation of the SOC band gap and the two possible topological states (Weyl-like semimetal and Chern insulator states) whose properties are tunable. The Weyl-like semimetal state is a critical point between the two Chern insulator states with opposite sign of the Chern numbers (+/- 1). The nontrivial band gap (up to 60.3 meV) and the Weyl-like semimetal state are promising for applications in spintronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000742384700001 Publication Date 2022-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 4 Open Access Not_Open_Access: Available from 06.07.2202
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:186514 Serial 6991
Permanent link to this record
 

 
Author Tkachenko, D.V.; Misko, V.R.; Peeters, F.M.
Title Effect of correlated noise on quasi-one-dimensional diffusion Type A1 Journal article
Year 2010 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 82 Issue 5 Pages 051102-051102,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Single-file diffusion (SFD) of an infinite one-dimensional chain of interacting particles has a long-time mean-square displacement ∝t1/2, independent of the type of interparticle repulsive interaction. This behavior is also observed in finite-size chains, although only for certain intervals of time t depending on the chain length L, followed by the ∝t for t→∞, as we demonstrate for a closed circular chain of diffusing interacting particles. Here, we show that spatial correlation of noise slows down SFD and can result, depending on the amount of correlated noise, in either subdiffusive behavior ∝tα, where 0<α<1/2, or even in a total suppression of diffusion (in the limit N→∞). Spatial correlation can explain the subdiffusive behavior in recent SFD experiments in circular channels.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000283710100001 Publication Date 2010-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 11 Open Access
Notes ; We acknowledge discussions with M. Saint-Jean. This work was supported by the “Odysseus” program of the Flemish Government and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 2.366; 2010 IF: 2.352
Call Number UA @ lucian @ c:irua:85799 Serial 806
Permanent link to this record
 

 
Author Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W.
Title Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3) Type A1 Journal article
Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 104 Issue 20 Pages 207401,1-207401,4
Keywords A1 Journal article; Particle Physics Group; Nanostructured and organic optical and electronic materials (NANOrOPT); Condensed Matter Theory (CMT)
Abstract (up) Single-file transport of water into carbon nanotubes is experimentally demonstrated for the first time through the splitting of the radial breathing mode (RBM) vibration in Raman spectra of bile salt solubilized tubes when both empty (closed) and water-filled (open-ended) tubes are present. D2O filling is observed for a wide range of diameters, d, down to very thin tubes [e.g., (5,3) tube, d=0.548  nm] for which only a single water molecule fits in the cross section of the internal nanotube channel. The shift in RBM frequency upon filling is found to display a very complex dependence on nanotube diameter and chirality, in support of a different yet well-defined ordering and orientation of water molecules at room temperature. Large shifts of the electronic transitions are also observed.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000277945900051 Publication Date 2010-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 140 Open Access
Notes ; Financial support from the Fund for Scientific Research Flanders, Belgium (FWO-Vlaanderen) (Project No. G.0129.07), is gratefully acknowledged. ; Approved Most recent IF: 8.462; 2010 IF: 7.622
Call Number UA @ lucian @ c:irua:83383 Serial 1141
Permanent link to this record
 

 
Author Ozden, A.; Ay, F.; Sevik, C.; Perkgoz, N.K.
Title CVD growth of monolayer MoS2: Role of growth zone configuration and precursors ratio Type A1 Journal article
Year 2017 Publication Japanese journal of applied physics Abbreviated Journal
Volume 56 Issue 6s:[1] Pages 06gg05
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Single-layer, large-scale two-dimensional material growth is still a challenge for their wide-range usage. Therefore, we carried out a comprehensive study of monolayer MoS2 growth by CVD investigating the influence of growth zone configuration and precursors ratio. We first compared the two commonly used approaches regarding the relative substrate and precursor positions, namely, horizontal and face-down configurations where facedown approach is found to be more favorable to obtain larger flakes under identical growth conditions. Secondly, we used different types of substrate holders to investigate the influence of the Mo and S vapor confinement on the resulting diffusion environment. We suggest that local changes of the S to Mo vapor ratio in the growth zone is a key factor for the change of shape, size and uniformity of the resulting MoS2 formations, which is also confirmed by performing depositions under different precursor ratios. Therefore, to obtain continuous monolayer films, the S to Mo vapor ratio is needed to be kept within a certain range throughout the substrate. As a conclusion, we obtained monolayer triangles with a side length of 90 mu m and circles with a diameter of 500 mu m and continuous films with an area of 85 0 mu m x 1 cm when the S-to-Mo vapor ratio is optimized. (C) 2017 The Japan Society of Applied Physics
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401059800003 Publication Date 2017-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-4922; 1347-4065 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193783 Serial 7747
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Koch, R.; Speck, F.; Ostler, M.; Nagel, P.; Merz, M.; Schupler, S.; Moreschini, L.; Chang, Y.J.; Seyller, T.; Peeters, F.M.; Horn, K.; Rotenberg, E.;
Title Luminescence, patterned metallic regions, and photon-mediated electronic changes in single-sided fluorinated graphene sheets Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 8 Pages 7801-7808
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Single-sided fluorination has been predicted to open an electronic band gap in graphene and to exhibit unique electronic and magnetic properties; however, this has not been substantiated by experimental reports. Our comprehensive experimental and theoretical study of this material on a SiC(0001) substrate shows that single-sided fluorographene exhibits two phases, a stable one with a band gap of similar to 6 eV and a metastable one, induced by UV irradiation, with a band gap of similar to 2.5 eV. The metastable structure, which reverts to the stable “ground-state” phase upon annealing under emission of blue light, in our view is induced by defect states, based on the observation of a nondispersive electronic state at the top of the valence band, not unlike that found in organic molecular layers. Our structural data show that the stable C2F ground state has a “boat” structure, in agreement with our X-ray magnetic circular dichroism data, which show the absence of an ordered magnetic phase. A high flux of UV or X-ray photons removes the fluorine atoms, demonstrating the possibility of lithographically patterning conducting regions into an otherwise semiconducting 2D material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000340992300025 Publication Date 2014-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 23 Open Access
Notes Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:119263 Serial 1857
Permanent link to this record
 

 
Author Tavernier, M.B.; Anisimovas, E.; Peeters, F.M.
Title Electron-vortex interaction in a quantum dot Type A1 Journal article
Year 2004 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 16th International Conference on High Magnetic Fields in Semiconductor, Physics, AUG 02-06, 2004, Florida State Univ, NHMFL, Tallahassee, FL Abbreviated Journal Int J Mod Phys B
Volume 18 Issue 27-29 Pages 3633-3636
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Small numbers N < 5 of two-dimensional Coulomb-interacting electrons trapped in a parabolic potential placed in a perpendicular magnetic field are investigated. The reduced wave function of this system, which is obtained by fixing the positions of N-1 electrons, exhibits strong correlations between the electrons and the zeros. These zeros axe often called vortices. An exact-diagonalization scheme is used to obtain the wave functions and the results are compared with results obtained from the recently proposed rotating electron molecule (REM) theory. We find that the vortices gather around the fixed electrons and repel each other, which is to a much lesser extend so for the REM results.
Address
Corporate Author Thesis
Publisher Place of Publication Singapore Editor
Language Wos 000227140200035 Publication Date 2005-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record
Impact Factor 0.736 Times cited Open Access
Notes Approved Most recent IF: 0.736; 2004 IF: 0.361
Call Number UA @ lucian @ c:irua:102749 Serial 992
Permanent link to this record
 

 
Author De Sloovere, D.; Safari, M.; Elen, K.; D'Haen, J.; Drozhzhin, O.A.; Abakumov, A.M.; Simenas, M.; Banys, J.; Bekaert, J.; Partoens, B.; Van Bael, M.K.; Hardy, A.
Title Reduced Na2+xTi4O9 composite : a durable anode for sodium-ion batteries Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 23 Pages 8521-8527
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Sodium-ion batteries (SIBs) are potential cost-effective solutions for stationary energy storage applications. Unavailability of suitable anode materials, however, is one of the important barriers to the maturity of SIBs. Here, we report a Na2+xTi4O9/C composite as a promising anode candidate for SIBs with high capacity and cycling stability. This anode is characterized by a capacity of 124 mAh g(-1) (plus 11 mAh g(-1) contributed by carbon black), an average discharge potential of 0.9 V vs Na/Na+, a good rate capability and a high stability (89% capacity retention after 250 cycles at a rate of 1 degrees C). The mechanisms of sodium insertion/deinsertion and of the formation of Na2+xTi4O9/C are investigated with the aid of various ex/in situ characterization techniques. The in situ formed carbon is necessary for the formation of the reduced sodium titanate. This synthesis method may enable the convenient synthesis of other composites of crystalline phases with amorphous carbon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453489300014 Publication Date 2018-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 7 Open Access
Notes ; This work was supported by the FWO (Research Foundation Flanders, project G040116). O.A.D. and A.M.A. are grateful to the Russian Science Foundation for financial support (Grant 17-73-30006). The authors acknowledge Pieter Samyn for Raman spectroscopy, Fulya Ulu Okudur for preliminary TEM, Bart Ruttens for XRD, Hilde Pellaers for SEM, Tom Haeldermans for elemental analysis, and Karen Leyssen and Vera Meynen for physisorption measurements. ; Approved Most recent IF: 9.466
Call Number UA @ admin @ c:irua:156235 Serial 5227
Permanent link to this record
 

 
Author Baelus, B.J.; Kadowaki, K.; Peeters, F.M.
Title Influence of surface defects on the vortex transitions in mesoscopic superconductors Type A1 Journal article
Year 2006 Publication AIP conference proceedings Abbreviated Journal
Volume 850 Issue a-b Pages 745-746
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Solving the nonlinear Ginzburg-Landau equations self-consistently, we investigate the influence of a triangular surface defect (i.e. pacman shaped sample) on the vortex transitions in mesoscopic superconducting disks. Depending on the size of the defect, vortices may enter/leave one by one or in pairs.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94704 Serial 1639
Permanent link to this record
 

 
Author Fleurov, V.; Ivanov, V.A.; Peeters, F.M.; Vagner, I.D.
Title Spin-engineered quantum dots Type A1 Journal article
Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 14 Issue 4 Pages 361-365
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to create and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nuclear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of binding electrons with energy up to several meV and the localization radius > 100 Angstrom. (C) 2002 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000177511900003 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 12 Open Access
Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
Call Number UA @ lucian @ c:irua:104150 Serial 3088
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.
Title Resonant harmonic generation and collective spin rotations in electrically driven quantum dots Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 12 Pages 125428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Spin rotations induced by an ac electric field in a two-electron double quantum dot are studied by an exact numerical solution of the time-dependent Schrodinger equation in the context of recent electric-dipole spin resonance experiments on gated nanowires. We demonstrate that the splitting of the main resonance line by the spin exchange coupling is accompanied by the appearance of fractional resonances and that both these effects are triggered by interdot tunnel coupling. We find that the ac-driven system generates residual but distinct harmonics of the driving frequency, which are amplified when tuned to the main transition frequency. The mechanism is universal for electron systems in electrically driven potentials and works also in the absence of electron-electron interaction or spin-orbit coupling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308867300005 Publication Date 2012-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by funds of the Ministry of Science and Higher Education (MNiSW) for 2012-2013 under Project No. IP2011038671, and by PL-Grid Infrastructure. M.P.N. gratefully acknowledges support from the Foundation for Polish Science (FNP) under START and MPD program cofinanced by the EU European Regional Development Fund. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101839 Serial 2885
Permanent link to this record
 

 
Author Zebrowski, D.P.; Peeters, F.M.; Szafran, B.
Title Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots Type A1 Journal article
Year 2017 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech
Volume 32 Issue 6 Pages 065016
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000402405800007 Publication Date 2017-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.305 Times cited Open Access
Notes ; This work was supported by the National Science Centre according to decision DEC-2013/11/B/ST3/03837 and by the Flemish Science Foundation (FWO-VL). ; Approved Most recent IF: 2.305
Call Number UA @ lucian @ c:irua:144238 Serial 4646
Permanent link to this record
 

 
Author Papp, G.; Borza, S.; Peeters, F.M.
Title Spin transport in a Mn-doped ZnSe asymmetric tunnel structure Type A1 Journal article
Year 2005 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 97 Issue 11 Pages 113901-113905
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Spin-dependent tunneling of electrons in a diluted magnetic semiconductor ZnSe/Zn1-xMnxSe/Zn1-yMnySe/ZnSe/Zn1-xMnxSe/ZnSe heterostructure is investigated theoretically in the presence of parallel magnetic and electric fields, but our modeling is appropriate for any dilute magnetic II-VI semiconductor system. In the studied asymmetric system the transmission of electrons and the degree of spin polarization depend on the strength of the magnetic and electric fields and on the direction of the applied bias. For suitable magnetic fields, the output current of the system exhibits a nearly 100% spin polarization and the device can be used as a spin filter. (C) 2005 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000229804700072 Publication Date 2005-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 26 Open Access
Notes Approved Most recent IF: 2.068; 2005 IF: 2.498
Call Number UA @ lucian @ c:irua:102728 Serial 3102
Permanent link to this record
 

 
Author Sethu, K.K.V.; Yasin, F.; Swerts, J.; Sorée, B.; De Boeck, J.; Kar, G.S.; Garello, K.; Couet, S.
Title Spin-orbit torque vector quantification in nanoscale magnetic tunnel junctions Type A1 Journal article
Year 2024 Publication ACS nano Abbreviated Journal
Volume 18 Issue 21 Pages 13506-13516
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Spin-orbit torques (SOT) allow ultrafast, energy-efficient toggling of magnetization state by an in-plane charge current for applications such as magnetic random-access memory (SOT-MRAM). Tailoring the SOT vector comprising of antidamping (T-AD) and fieldlike (T-FL) torques could lead to faster, more reliable, and low-power SOT-MRAM. Here, we establish a method to quantify the longitudinal (T-AD) and transverse (T-FL) components of the SOT vector and its efficiency chi(AD) and chi(FL), respectively, in nanoscale three-terminal SOT magnetic tunnel junctions (SOT-MTJ). Modulation of nucleation or switching field (B-SF) for magnetization reversal by SOT effective fields (B-SOT) leads to the modification of SOT-MTJ hysteresis loop behavior from which chi(AD) and chi(FL) are quantified. Surprisingly, in nanoscale W/CoFeB SOT-MTJ, we find chi(FL) to be (i) twice as large as chi(AD) and (ii) 6 times as large as chi(FL) in micrometer-sized W/CoFeB Hall-bar devices. Our quantification is supported by micromagnetic and macrospin simulations which reproduce experimental SOT-MTJ Stoner-Wohlfarth astroid behavior only for chi(FL) > chi(AD). Additionally, from the threshold current for current-induced magnetization switching with a transverse magnetic field, we show that in SOT-MTJ, T-FL plays a more prominent role in magnetization dynamics than T-AD. Due to SOT-MRAM geometry and nanodimensionality, the potential role of nonlocal spin Hall spin current accumulated adjacent to the SOT-MTJ in the mediation of T-FL and chi(FL) amplification merits to be explored.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001226121700001 Publication Date 2024-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205980 Serial 9173
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M.
Title Giant magnetic anisotropy in doped single layer molybdenum disulfide and fluorographene Type A1 Journal article
Year 2016 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 28 Issue 28 Pages 195301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Stable monolayer materials based on existing, well known and stable two-dimensional crystal fluorographene and molybdenum disulfide are predicted to exhibit a huge magnetocrystalline anisotropy when functionalized with adsorbed transition metal atoms at vacant sides. Ab initio calculations within the density-functional theory formalism were performed to investigate the adsorption of the transitional metals in a single S (or F) vacancy of monolayer molybdenum disulfide (or fluorographene). We found strong bonding of the transitional metal atoms to the vacant sites with binding energies ranging from 2.5 to 5.2 eV. Our calculations revealed that these systems with adsorbed metal atoms exhibit a magnetic anisotropy, specifically the structures including Os and Ir show a giant magnetocrystalline anisotropy energy of 31-101 meV. Our results demonstrate the possibility of obtaining stable monolayer materials with huge magnetocrystalline anisotropy based on preexisting, well known and stable two-dimensional crystals: fluorographene and molybdenum disulfide. We believe that the results obtained here are useful not only for deeper understanding of the origin of magnetocrystalline anisotropy but also for the design of monolayer optoelectronic devices with novel functionalities.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000374394700007 Publication Date 2016-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 7 Open Access
Notes Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:133611 Serial 4185
Permanent link to this record
 

 
Author Michel, K.H.; Scuracchio, P.; Peeters, F.M.
Title Sound waves and flexural mode dynamics in two-dimensional crystals Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages 094302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and outof-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000409246200003 Publication Date 2017-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145630 Serial 4751
Permanent link to this record
 

 
Author Michel, K.H.; Lamoen, D.; David, W.I.F.
Title Orientational order and disorder in solid C60 : theory and diffraction experiments Type A1 Journal article
Year 1995 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
Volume 51 Issue 3 Pages 365-374
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Starting from a microscope model of the intermolecular potential, a unified description is presented of the Bragg scattering law in the orientationally disordered and in the ordered phase of solid C-60. The orientational structure factor is expanded in terms of symmetry-adapted surface harmonics. The expansion coefficients are calculated from theory and compared with experiment Their temperature evolution is studied in the disordered phase at the 260 K transitions and in the ordered phase. In the ordered phase, new results from high-resolution neutron powder diffraction are given. In the disordered phase, space group Fm $($) over bar$$ 3m, the reflections have A(1g) symmetry; in the ordered phase, space group Pa $$($) over bar 3, reflections of T-2g symmetry appear and in addition the A(1g) reflections are renormalized. The orientational density distribution is calculated. The effective crystal-field potential is constructed, its temperature evolution in the ordered phase is studied and related to the occurrence of an orientational glass.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos A1995RB59400018 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.307 Times cited 14 Open Access
Notes Approved CHEMISTRY, MULTIDISCIPLINARY 65/163 Q2 # CRYSTALLOGRAPHY 10/26 Q2 #
Call Number UA @ lucian @ c:irua:12189 Serial 2518
Permanent link to this record