|   | 
Details
   web
Records
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G.
Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 20 Pages 8901-8913
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000413884900037 Publication Date 2017-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 13 Open Access OpenAccess
Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:147432 Serial 4886
Permanent link to this record
 

 
Author Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A.M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M.
Title Synthesis of Li-Rich NMC : a comprehensive study Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 23 Pages 9923-9936
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) <script type='text/javascript'>document.write(unpmarked('Li-rich NMC are considered nowadays as one of the most promising candidates for high energy density cathodes. One significant challenge is nested in adjusting their synthesis conditions to reach optimum electrochemical performance, but no consensus has been reached yet on the ideal synthesis protocol. Herein, we revisited the elaboration of Li-rich NMC electrodes by focusing on the science involved through each synthesis steps using carbonate Ni0.1625Mn0.675Co0.1625CO3 precursor coprecipitation combined with solid state synthesis. We demonstrated the effect of precursors concentration on the kinetics of the precipitation reaction and provided clues to obtain spherically agglomerated NMC carbonates of different sizes. Moreover, we highlighted the strong impact of the Li2CO3/NMC carbonate ratio on the morphology and particles size of Li-rich NMC and subsequently on their electrochemical performance. Ratio of 1.35 was found to reproducibly give the best performance with namely a first discharge capacity of 269 mAh g(-1) and capacity retention of 89.6% after 100 cycles. We hope that our results, which reveal how particle size, morphology, and phase composition affect the materials electrochemical performance, will help in reconciling literature data while providing valuable fundamental information for up scaling approaches.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000418206600010 Publication Date 2017-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 23 Open Access Not_Open_Access
Notes ; The authors acknowledge the French Research Network on Electrochemical Energy Storage (RS2E). V.P and J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. The authors are thankful to Dr. G. Rousse for the help on Rietveld refinements. ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:148530 Serial 4899
Permanent link to this record
 

 
Author Arias-Duque, C.; Bladt, E.; Munoz, M.A.; Hernandez-Garrido, J.C.; Cauqui, M.A.; Rodriguez-Izquierdo, J.M.; Blanco, G.; Bals, S.; Calvino, J.J.; Perez-Omil, J.A.; Yeste, M.P.
Title Improving the redox response stability of ceria-zirconia nanocatalysts under harsh temperature conditions Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 29 Pages 9340-9350
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) <script type='text/javascript'>document.write(unpmarked('By depositing ceria on the surface of yttrium stabilized zirconia (YSZ) nanocrystals and further activation under high-temperature reducing conditions, a 13% mol. CeO2/YSZ catalyst structured as subnanometer thick, pyrochlore-type, ceria-zirconia islands has been prepared. This nanostructured catalyst depicts not only high oxygen storage capacity (OSC) values but, more importantly, an outstandingly stable redox response upon oxidation and reduction treatments at very high temperatures, above 1000 degrees C. This behavior largely improves that observed on conventional ceria-zirconia solid solutions, not only of the same composition but also of those with much higher molar cerium contents. Advanced scanning transmission electron microscopy (STEM-XEDS) studies have revealed as key not only to detect the actual state of the lanthanide in this novel nanocatalyst but also to rationalize its unusual resistance to redox deactivation at very high temperatures. In particular, high-resolution X-ray dispersive energy studies have revealed the presence of unique bilayer ceria islands on top of the surface of YSZ nanocrystals, which remain at surface positions upon oxidation and reduction treatments up to 1000 degrees C. Diffusion of ceria into the bulk of these crystallites upon oxidation at 1100 degrees C irreversibly deteriorates both the reducibility and OSC of this nanostructured catalyst.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000415911600047 Publication Date 2017-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 20 Open Access OpenAccess
Notes ; Financial support from MINECO/FEDER (Project ref: MAT2013-40823-R), Junta de Andalucia (FQM334 and FQM110), and EU FP7 (ESTEEM2) are acknowledged. E.B. and S.B. acknowledges financial support from European Research Council (ERC- Starting Grant #33S078-COLOURA-TOM). J.C.H.-G. acknowledges support from the Ramon y Cajal Fellowships Program of MINECO (RYC-2012-10004). ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:147706UA @ admin @ c:irua:147706 Serial 4880
Permanent link to this record
 

 
Author Verchenko, V.Y.; Wei, Z.; Tsirlin, A.A.; Callaert, C.; Jesche, A.; Hadermann, J.; Dikarev, E.V.; Shevelkov, A.V.
Title Crystal growth of the Nowotny chimney ladder phase Fe2Ge3 : exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 23 Pages 9954-9963
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) <script type='text/javascript'>document.write(unpmarked('A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000418206600013 Publication Date 2017-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access OpenAccess
Notes ; The authors thank Dr. Sergey Kazakov and Oleg Tyablikov for their help with the PXRD experiments. V.Y.V. appreciates the help of Dr. Sergey Dorofeev in provision and handling of the Mo(CO)<INF>6</INF> reagent. The work is supported by the Russian Science Foundation, Grant No. 17-13-01033. V.Y.V. appreciates the support from the European Regional Development Fund, Project No. TK134. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research under the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. E.V.D. thanks the National Science Foundation, Grant No. CHE-1152441. C.C. acknowledges the support from the University of Antwerp through the BOF Grant No. 31445. ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:148531 Serial 4869
Permanent link to this record
 

 
Author Tarakanov, P.A.; Tarakanova, E.N.; Dorovatovskii, P.V.; Zubavichus, Y.V.; Khrustalev, V.N.; Trashin, S.A.; De Wael, K.; Neganova, M.E.; Mischenko, D.V.; Sessler, J.L.; Stuzhin, P.A.; Pushkarev, V.E.; Tomilova, L.G.
Title Optical readout of controlled monomer-dimer self-assembly Type A1 Journal article
Year 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal
Volume 47 Issue 40 Pages 14169-14173
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) 5,7-Substituted 1,4-diazepinoporphyrazine magnesium(II) complexes were synthesized via Mg(II)-alkoxide templated macrocyclization. A single crystal growth synchrotron diffraction analysis permitted what is to our knowledge the first structural characterization of a 1,4-diazepinoporphyrazine. It exists as a dimer in the solid state. In silico calculations supported by solution phase spectral studies involving a series of representative derivatives, provided insights into the factors governing dimerization of 1,4-diazepinoporphyrazines. The present 1,4-diazepinoporphyrazines serve as useful probes for understanding the determinants that guide dimermonomer equilibria and the self-assembly of phthalocyanine derivatives.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000447708900005 Publication Date 2018-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes ; We thank Dr Alexander V. Chernyak for recording the NMR spectra. Synthetic and optical spectroscopic studies in this work were supported by the RSF (Grant 17-73-10413). NMR studies were supported by the Council under the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (Grant MD-2991.2017.3). SR-XRD studies were supported by the RUDN University Program “5-100”. We also acknowledge support of electrochemical, in vitro and in vivo studies by the State Assignment (Theme 45.5 Creation of compounds with given physicochemical properties) and the facilities provided by the Center of Collective Use of IPAC RAS (Chernogolovka, Russia). Single-crystal X-ray measurements have been performed at the unique scientific facility Kurchatov Synchrotron Radiation Source supported by the Ministry of Education and Science of the Russian Federation (project code RFMEFI61917X0007). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:151294 Serial 5755
Permanent link to this record
 

 
Author Altantzis, T.; Wang, D.; Kadu, A.; van Blaaderen, A.; Bals, S.
Title Optimized 3D Reconstruction of Large, Compact Assemblies of Metallic Nanoparticles Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 47 Pages 26240-26246
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract (down) 3D characterization of assemblies of nanoparticles is of great importance to determine their structure-property connection. Such investigations become increasingly more challenging when the assemblies become larger and more compact. In this paper, we propose an optimized approach for electron tomography to minimize artefacts related to beam broadening in High Angle Annular Dark-Field Scanning Transmission Electron Microscopy mode. These artefacts are typically present at one side of the reconstructed 3D data set for thick nanoparticle assemblies. To overcome this problem, we propose a procedure in which two tomographic tilt series of the same sample are acquired. After acquiring the first series, the sample is flipped over 180o, and a second tilt series is acquired. By merging the two reconstructions, blurring in the reconstructed volume is minimized. Next, this approach is combined with an advanced three-dimensional reconstruction algorithm yielding quantitative structural information. Here, the approach is applied to a thick and compact assembly of spherical Au nanoparticles, but the methodology can we used to investigate a broad range of samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000752810100031 Publication Date 2021-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 4 Open Access OpenAccess
Notes This work was supported by the European Research Council (grant No. 815128−REALNANO to S.B.). T.A. acknowledges the University of Antwerp Research fund (BOF). D.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union’s Seventh Framework Program (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom).; sygmaSB Approved Most recent IF: 4.536
Call Number EMAT @ emat @c:irua:185224 Serial 6904
Permanent link to this record
 

 
Author Simon, Q.; Barreca, D.; Gasparotto, A.; Maccato, C.; Montini, T.; Gombac, V.; Fornasiero, P.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.
Title Vertically oriented CuO/ZnO nanorod arrays : from plasma-assisted synthesis to photocatalytic H2 production Type A1 Journal article
Year 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 22 Issue 23 Pages 11739-11747
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) 1D CuO/ZnO nanocomposites were grown on Si(100) substrates by means of an original two-step synthetic strategy. ZnO nanorod (NR) arrays were initially deposited by plasma enhanced-chemical vapor deposition (PE-CVD) from an ArO2 atmosphere. Subsequently, tailored amounts of CuO were dispersed over zinc oxide matrices by radio frequency (RF)-sputtering of Cu from Ar plasmas, followed by thermal treatment in air. A thorough characterization of the obtained systems was carried out by X-ray photoelectron and X-ray excited-Auger electron spectroscopies (XPS and XE-AES), glancing incidence X-ray diffraction (GIXRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) and energy filtered-TEM (EF-TEM). Pure and highly oriented CuO/ZnO NR arrays, free from ternary ZnCuO phases and characterized by a copper(II) oxide content controllable as a function of the adopted RF-power, were successfully obtained. Interestingly, the structural relationships between the two oxides at the CuO/ZnO interface were found to depend on the overall CuO loading. The obtained nanocomposites displayed promising photocatalytic performances in H2 production by reforming of ethanolwater solutions under simulated solar illumination, paving the way to the sustainable conversion of solar light into chemical energy.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000304351400046 Publication Date 2012-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 74 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:98382 Serial 3840
Permanent link to this record
 

 
Author Ninakanti, R.; Dingenen, F.; Borah, R.; Peeters, H.; Verbruggen, S.W.
Title Plasmonic hybrid nanostructures in photocatalysis : structures, mechanisms, and applications Type A1 Journal article
Year 2022 Publication Topics in Current Chemistry Abbreviated Journal
Volume 380 Issue 5 Pages 40-62
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) (Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term “hybrid” implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core–shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000839670500009 Publication Date 2022-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2364-8961 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189825 Serial 7195
Permanent link to this record
 

 
Author Van Tendeloo, G.; De Meulenaere, P.; Letouzé, F.; Martin, C.; Hervieu, M.; Raveau, B.
Title Cation ordering in [(Tl, M)O] layers of “1202”-based cuprates : similarity to ordering in fcc-based alloys Type A1 Journal article
Year 1997 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 132 Issue Pages 113-122
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) ''1201'' Tl-based substituted cuprates of the type (Tl1-xMx) Sr2CuO5 have been synthesized for M = Nb, Ta, or W. These materials do not superconduct due to a statistical distribution of some of the M for Cu. The remarkable feature of these materials is the ordering observed between Tl and M in the (Tl1-xMx-epsilon)O plane. The type of ordering depends on the composition and shows remarkable similarities with the ordering in Ni-Mo or other so-called 1 1/2 0 type fcc-based alloys or with the ordering in rocksalt oxides TiOx. The short-range order, for M = W, can be readily interpreted in terms of a mixing of nano-clusters with two different compositions. These observations of two-dimensional ordering confirm recent ideas about ordering in three-dimensional fcc-based alloys.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1997XY68900015 Publication Date 2002-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 2 Open Access
Notes Approved Most recent IF: 2.299; 1997 IF: 1.486
Call Number UA @ lucian @ c:irua:21448 Serial 299
Permanent link to this record
 

 
Author Van Aert, S.
Title Atomen in 3D : Antwerpenaren brengen atomaire structuur nanodeeltjes in beeld Type Newspaper/Magazine/blog article
Year 2011 Publication Chemie magazine Abbreviated Journal
Volume 7 Issue 3 Pages 9
Keywords Newspaper/Magazine/blog article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0379-7651 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94122 Serial 163
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Bals, S.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Crystallographic shear structures as a route to anion-deficient perovskites Type A1 Journal article
Year 2006 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 45 Issue 40 Pages 6697-6700
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000241474500022 Publication Date 2006-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 62 Open Access
Notes Approved Most recent IF: 11.994; 2006 IF: 10.232
Call Number UA @ lucian @ c:irua:61689 Serial 589
Permanent link to this record
 

 
Author Lisiecki, I.; Turner, S.; Bals, S.; Pileni, M.P.; Van Tendeloo, G.
Title The remarkable and intriguing resistance to oxidation of 2D ordered hcp Co nanocrystals: a new intrinsic property Type A1 Journal article
Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 21 Issue 12 Pages 2335-2338
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000267049200001 Publication Date 2009-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 28 Open Access
Notes Iap-Vi; Esteem 026019 Approved Most recent IF: 9.466; 2009 IF: 5.368
Call Number UA @ lucian @ c:irua:77887 Serial 2867
Permanent link to this record
 

 
Author Verlinden, G.; Janssens, G.; Gijbels, R.; van Espen, P.; Geuens, I.
Title Three-dimensional chemical characterization of complex silver halide microcrystals by scanning ion microprobe mass analysis Type A1 Journal article
Year 1997 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 69 Issue Pages 3773-3779
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Chemometrics (Mitac 3)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1997XV71200019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 6 Open Access
Notes Approved Most recent IF: 6.32; 1997 IF: 4.743
Call Number UA @ lucian @ c:irua:16959 Serial 3647
Permanent link to this record
 

 
Author Dendooven, J.; Goris, B.; Devloo-Casier, K.; Levrau, E.; Biermans, E.; Baklanov, M.R.; Ludwig, K.F.; van der Voort, P.; Bals, S.; Detavernier, C.
Title Tuning the pore size of ink-bottle mesopores by atomic layer deposition Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 11 Pages 1992-1994
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000305092600002 Publication Date 2012-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 52 Open Access
Notes Fwo Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:99078 Serial 3760
Permanent link to this record
 

 
Author Bogaerts, A.; van de Sanden, R.
Title Special Issue of Papers by Plenary and Topical Invited Lecturers at the 22nd International Symposium on Plasma Chemistry (ISPC 22), 5–10 July 2015, Antwerp, Belgium: Introduction Type Editorial
Year 2016 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P
Volume 36 Issue 36 Pages 1-2
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370720800001 Publication Date 2016-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.355 Times cited Open Access
Notes Approved Most recent IF: 2.355
Call Number c:irua:130713 Serial 4003
Permanent link to this record
 

 
Author Karakulina, O.M.; Khasanova, N.R.; Drozhzhin, O.A.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M.
Title Antisite Disorder and Bond Valence Compensation in Li2FePO4F Cathode for Li-Ion Batteries Type A1 Journal article
Year 2016 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 7578-7581
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387518500004 Publication Date 2016-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 10 Open Access
Notes Russian Science Foundation, 16-19-00190 ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 9.466
Call Number EMAT @ emat @ c:irua:139170 c:irua:138599 Serial 4320
Permanent link to this record
 

 
Author Attri, P.; Bogaerts, A.
Title Perspectives of Plasma-treated Solutions as Anticancer Drugs Type A1 Journal article
Year 2019 Publication Anti-cancer agents in medicinal chemistry Abbreviated Journal Anti-Cancer Agent Me
Volume 19 Issue 4 Pages 436-438
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472726300001 Publication Date 2019-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1871-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.598 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.598
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160694 Serial 5189
Permanent link to this record
 

 
Author Payne, L.M.; Masia, F.; Zilli, A.; Albrecht, W.; Borri, P.; Langbein, W.
Title Quantitative morphometric analysis of single gold nanoparticles by optical extinction microscopy: Material permittivity and surface damping effects Type A1 Journal article
Year 2021 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
Volume 154 Issue 4 Pages 044702
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000630495600001 Publication Date 2021-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited Open Access OpenAccess
Notes This work was supported by the Welsh Government Life Sciences Bridging Fund (Grant No. LSBF/R6-005), the UK EPSRC (Grant Nos. EP/I005072/1 and EP/M028313/1), and the European Commission (Grant No. EUSMI E191000350). P.B. acknowledges the Royal Society for her Wolfson research merit award (Grant No. WM140077). F.M. acknowledges the Ser Cymru II programme (Case ID 80762-CU-148) which is part-funded by Cardiff University and the European Regional Development Fund through the Welsh Government. W.A. acknowledges an Individual Fellowship from the Marie Skłodowska-Curie actions (MSCA) under the EU’s Horizon 2020 program (Grant No. 797153, SOPMEN) and Sara Bals for supporting the STEM measurements. The brightfield TEM was performed by Thomas Davies at Cardiff University. We acknowledge Iestyn Pope for technical support of the optical equipment. Approved Most recent IF: 2.965
Call Number EMAT @ emat @c:irua:177566 Serial 6748
Permanent link to this record
 

 
Author Albrecht, W.; Van Aert, S.; Bals, S.
Title Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope Type A1 Journal article
Year 2021 Publication Accounts Of Chemical Research Abbreviated Journal Accounts Chem Res
Volume 54 Issue 5 Pages 1189-1199
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000626269900011 Publication Date 2021-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.268 Times cited 12 Open Access OpenAccess
Notes The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128–REALNANO and No. 770887–PICOMETRICS), the Research Foundation Flanders (FWO, G.0267.18N), and the European Commission (EUSMI). The authors furthermore acknowledge funding from the European Union’s Horizon 2020 research and innovation program, ESTEEM3. The authors also acknowledge contributions from all co-workers that have contributed over the years: Thomas Altantzis, Annick De Backer, Joost Batenburg and co-workers, Armand Béché, Eva Bladt, Lewys Jones and co-workers, Luis Liz-Marzán and co-workers, Ivan Lobato, Thais Milagres de Oliveira, Peter Nellist and co-workers, Hugo Pérez Garza and co-workers, Alexander Skorikov, Sara Skrabalak and co-workers, Sandra Van Aert, Alfons van Blaaderen and co-workers, Hans Vanrompay, Staf Van Tendeloo, and Johan Verbeeck.; sygmaSB; Approved Most recent IF: 20.268
Call Number EMAT @ emat @c:irua:177644 Serial 6752
Permanent link to this record
 

 
Author Salzmann, B.B.V.; Wit, J. de; Li, C.; Arenas-Esteban, D.; Bals, S.; Meijerink, A.; Vanmaekelbergh, D.
Title Two-Dimensional CdSe-PbSe Heterostructures and PbSe Nanoplatelets: Formation, Atomic Structure, and Optical Properties Type A1 Journal article
Year 2022 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 126 Issue 3 Pages 1513-1522
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000744909200001 Publication Date 2022-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 12 Open Access OpenAccess
Notes H. Meeldijk is kindly acknowledged for helping with electron microscopy at Utrecht University. T. Prins is kindly acknowledged for useful discussions. B.B.V.S. and D.V. acknowledge the Dutch NWO for financial support via the TOP-ECHO Grant No. 715.016.002. D.V. acknowledges financial support from the European ERC Council, ERC Advanced Grant 692691 “First Step”. J.W. and A.M. acknowledge financial support from the project CHEMIE.PGT.2019.004 of TKI/ Topsector Chemie, which is partly financed by the Dutch NWO. S.B, C.L., and D.A.E. acknowledge financial support from the European ERC Council, ERC Consolidator Grant realnano No. 815128. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant No. 731019 (EUSMI). sygmaSB Approved Most recent IF: 3.7
Call Number EMAT @ emat @c:irua:185454 Serial 6953
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Eshonqulov, Gb.; Neyts, Ec.; Berdiyorov, Gr.
Title Atomic level mechanisms of graphene healing by methane-based plasma radicals Type A1 Journal article
Year 2023 Publication FlatChem Abbreviated Journal FlatChem
Volume 39 Issue Pages 100506
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000990342500001 Publication Date 2023-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2627 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.2 Times cited Open Access OpenAccess
Notes U.K., M.Y. and G.B.E. acknowledge the support of the Agency for Innovative Development of the Republic of Uzbekistan (Grant numbers F-FA-2021-512 and FZ-2020092435). The computational resources and services used in this work were partially provided by the HPC core facility CalcUA of the Universiteit Antwerpen and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. Approved Most recent IF: 6.2; 2023 IF: NA
Call Number PLASMANT @ plasmant @c:irua:197442 Serial 8813
Permanent link to this record
 

 
Author Wanten, B.; Vertongen, R.; De Meyer, R.; Bogaerts, A.
Title Plasma-based CO2 conversion: How to correctly analyze the performance? Type A1 journal article
Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry
Volume 86 Issue Pages 180-196
Keywords A1 journal article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001070885000001 Publication Date 2023-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-4956 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.1 Times cited Open Access Not_Open_Access
Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221N), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No 810182 – SCOPE ERC Synergy project), and the Methusalem funding of the University of Antwerp. We acknowledge the icons from the graphical abstract made by dDara, geotatah, Spashicons and Freepik on www.flaticon.com. We also thank Stein Maerivoet, Joachim Slaets, Elizabeth Mercer, Colín Ó’Modráin, Joran Van Turnhout, Pepijn Heirman, dr. Yury Gorbanev, dr. Fanny Girard-Sahun and dr. Sean Kelly for the interesting discussions and feedback. Approved Most recent IF: 13.1; 2023 IF: 2.594
Call Number PLASMANT @ plasmant @c:irua:198709 Serial 8816
Permanent link to this record
 

 
Author Chowdhury, M.S.; Esteban, D.A.; Amin, R.; Román-Freijeiro, C.; Rösch, E.L.; Etzkorn, M.; Schilling, M.; Ludwig, F.; Bals, S.; Salgueiriño, V.; Lak, A.
Title Organic Molecular Glues to Design Three-Dimensional Cubic Nano-assemblies of Magnetic Nanoparticles Type A1 Journal Article
Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.
Volume 36 Issue 14 Pages 6865-6876
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001275 Publication Date 2024-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.6 Times cited Open Access
Notes Ministerio de Ciencia e Innovaci?n, PID2020-119242-I00 ; Deutsche Forschungsgemeinschaft, LA 4923/3-1 RTG 1952 ; Horizon 2020 Framework Programme, 823717 ; Approved Most recent IF: 8.6; 2024 IF: 9.466
Call Number EMAT @ emat @c:irua:207594 Serial 9258
Permanent link to this record
 

 
Author Hadermann, J.; Pérez, O.; Créon, N.; Michel, C.; Hervieu, M.
Title The (3 + 2)D structure of oxygen deficient LaSrCuO3.52 Type A1 Journal article
Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 17 Issue 22 Pages 2344-2350
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000247349400020 Publication Date 2007-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 7 Open Access
Notes Supergmr:Hprn-Ct-2000-0021 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:64749 c:irua:64749 Serial 13
Permanent link to this record
 

 
Author Nivesanond, K.; Peeters, A.; Lamoen, D.; van Alsenoy, C.
Title Ab initio calculation of the interaction energy in the P2 binding pocket of HIV-1 protease Type A1 Journal article
Year 2005 Publication International Journal Of Quantum Chemistry Abbreviated Journal Int J Quantum Chem
Volume 105 Issue 3 Pages 292-299
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000232232300009 Publication Date 2005-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7608;1097-461X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.92 Times cited 8 Open Access
Notes Approved Most recent IF: 2.92; 2005 IF: 1.192
Call Number UA @ lucian @ c:irua:54919 Serial 30
Permanent link to this record
 

 
Author Martin, J.M.L.; Taylor, P.R.; François, J.P.; Gijbels, R.
Title Ab initio study of the spectroscopy, kinetics, and thermochemistry of the BN2 molecule Type A1 Journal article
Year 1994 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 222 Issue Pages 517-523
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1994NN02600016 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 14 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10255 Serial 36
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
Title Ab initio study of the structure, infrared spectra and heat of formation of C4 Type A1 Journal article
Year 1991 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 94 Issue Pages 3753-3761
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1991FA77800052 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.952 Times cited 62 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:715 Serial 38
Permanent link to this record
 

 
Author Taylor, P.R.; Martin, J.M.L.; François, J.P.; Gijbels, R.
Title An ab initio study of the C3+ cation using multireference methods Type A1 Journal article
Year 1991 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 95 Issue Pages 6530-6534
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record
Impact Factor 2.952 Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:720 Serial 39
Permanent link to this record
 

 
Author Lamoen, D.; Persson, B.N.J.
Title Adsorption of potassium and oxygen on graphite: a theoretical study Type A1 Journal article
Year 1998 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
Volume 108 Issue Pages 3332-3341
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000074379600032 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 91 Open Access
Notes Approved Most recent IF: 2.965; 1998 IF: 3.147
Call Number UA @ lucian @ c:irua:19420 Serial 64
Permanent link to this record
 

 
Author Collart, O.; Cool, P.; van der Voort, P.; Meynen, V.; Vansant, E.F.; Houthoofd, K.J.; Grobet, P.J.; Lebedev, O.I.; Van Tendeloo, G.
Title Aluminum incorporation into MCM-48 toward the creation of Brønsted acidity Type A1 Journal article
Year 2004 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B
Volume 108 Issue Pages 13905-13912
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000224164000003 Publication Date 2004-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.177 Times cited 13 Open Access
Notes Fwo; Iuap P5/01 Approved Most recent IF: 3.177; 2004 IF: 3.834
Call Number UA @ lucian @ c:irua:49014 Serial 92
Permanent link to this record