toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ionescu, R.; Espinosa, E.H.; Leghrib, R.; Felten, A.; Pireaux, J.-J.; Erni, R.; Van Tendeloo, G.; Bittencourt, C.; Canellas, N.; Llobet, E. pdf  doi
openurl 
  Title Novel hybrid materials for gas sensing applications made of metal-decorated MWCNTs dispersed on nano-particle metal oxides Type A1 Journal article
  Year 2008 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 131 Issue 1 Pages 174-182  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000255426800026 Publication Date 2007-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 47 Open Access  
  Notes Pai Approved Most recent IF: 5.401; 2008 IF: 3.122  
  Call Number UA @ lucian @ c:irua:68872 Serial 2377  
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Sleegers, N.; Florea, A.; Cowen, T.; Moretto, L.M.; Piletsky, S.; De Wael, K. pdf  doi
openurl 
  Title Conductive imprinted polymers for the direct electrochemical detection of beta-lactam antibiotics: The case of cefquinome Type A1 Journal article
  Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 297 Issue 297 Pages 126786  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) A biomimetic sensor for cefquinome (CFQ) was designed at multi-walled carbon nanotubes modified graphite screen-printed electrodes (MWCNTs-G-SPEs) as a proof-of-concept for the creation of a sensors array for beta-lactam antibiotics detection in milk. The sensitive and selective detection of antibiotic residues in food and environment is a fundamental step in the elaboration of prevention strategies to fight the insurgence of antimicrobial resistance (AMR) as recommended by authorities around the world (EU, WHO, FDA). The detection strategy is based on the characteristic electrochemical fingerprint of the target antibiotic cefquinome. A conducive electropolymerized molecularly imprinted polymer (MIP) coupled with MWCNTs was found to be the optimal electrode modifier, able to provide an increased selectivity and sensitivity for CFQ detection. The design of CFQ-MIP was facilitated by the rational selection of the monomer, 4-aminobenzoic acid (4-ABA). The electropolymerization process of 4-ABA have not been fully elucidated yet; for this reason a thorough study and optimization of electropolymerization conditions was performed to obtain a conducive and stable poly(4-ABA) film. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and cyclic voltammetry (CV). CFQ-MIP were synthesized at MWCNT-G-SPEs by electropolyrnerization in pH approximate to 1 (0.1 M sulphuric acid) with a monomer:template ratio of 5:1. Two different analytical protocols were tested (single and double step detection) to minimize unspecific adsorptions and improve the sensitivity. Under optimal conditions, the lowest CFQ concentration detectable by square wave voltammetry (SWV) at the modified sensor was 50 nM in 0.1 M phosphate buffer pH 2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000478562700020 Publication Date 2019-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 4 Open Access  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223. This work was also supported by FWO. ; Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:161777 Serial 5549  
Permanent link to this record
 

 
Author Marikutsa, A.; Krivetskiy, V.; Yashina, L.; Rumyantseva, M.; Konstantinova, E.; Ponzoni, A.; Comini, E.; Abakumov, A.; Gaskov, A. doi  openurl
  Title Catalytic impact of RuOx clusters to high ammonia sensitivity of tin dioxide Type A1 Journal article
  Year 2012 Publication Sensors and actuators : B : chemical T2 – 25th Eurosensors Conference, SEP 04-07, 2011, Athens, GREECE Abbreviated Journal Sensor Actuat B-Chem  
  Volume 175 Issue Pages 186-193  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) A comparative study of NH3-sensing performance of blank and modified nanocrystal line SnO2 was performed. Tin dioxide modified by ruthenium displayed the highest ammonia sensitivity with a maximum signal at 200 degrees C. The modifier was shown by XPS and EPR to occur in a mixed valence state of oxidized ruthenium distributed between the surface and bulk of tin dioxide nanocrystals. RuOx clustering on SnO2 surface was detected by means of electron microscopy assisted EDX-mapping. The effect of RuOx on tin dioxide interaction with ammonia was studied by temperature-programmed NH3 desorption, simultaneous Kelvin probe and DC-resistance measurements, EPR spectroscopy and analyses of the gas-solid interaction products. The modifier was shown to promote the materials reactivity to NH3 due to the catalytic activity of RuOx. The interaction with ammonia resulted in dipoles formation on the oxide surface along with reducing the grains net surface charge, established from the electron affinity increase and resistance decrease during NH3 exposure. The RuOx-catalyzed gas-solid interaction was deduced to proceed deeper than in the case of non-modified SnO2 and to yield nitrogen oxides (e.g. NO2), as was suggested by the oxidative character of gaseous products of NH3 interaction with RuOx-modified tin dioxide at 200 degrees C. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000312358700033 Publication Date 2012-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 20 Open Access  
  Notes Approved Most recent IF: 5.401; 2012 IF: 3.535  
  Call Number UA @ lucian @ c:irua:105985 Serial 293  
Permanent link to this record
 

 
Author Pilehvar, S.; Reinemann, C.; Bottari, F.; Vanderleyden, E.; Van Vlierberghe, S.; Blust, R.; Strehlitz, B.; De Wael, K. pdf  url
doi  openurl
  Title A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin Type A1 Journal article
  Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 240 Issue Pages 1024-1035  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) A joint action of ssDNA aptamers and electrochemistry is a key element in developing successful biosensing platforms, since aptamers are capable of binding various targets with high specificity, and electrochemistry is one of the most sensitive techniques for on-site detections. A continuous search for improved immobilization and sensing strategies of aptamers on transducer surfaces resulted in the strategy presented in this article. The strategy is based on the covalent attachment of gold nanoparticles on the surface of glassy carbon electrodes through sulfhydryl-terminated monolayer, acting as a glue to connect AuNPs on the electrode. The covalently attached gold nanoparticles modified glassy carbon electrodes have been applied for the efficient immobilization of thiolated ssDNA probes, with a surface coverage of about 8.54 × 1013 molecules cm−2 which was 7-fold higher than that on the electrochemically deposited gold nanoparticles. Consequently, improved sensitivity, good reproducibility and stability are achieved for electrochemical aptasensor. Combined with the high affinity and specificity of an aptamer, a simple, novel, rapid, sensitive and label-free electrochemical aptasensor was successfully fabricated for ofloxacin (OFL) detection. The linear dynamic range of the sensor varies between 5 × 10−8 to 2 × 10−5 M OFL with a detection limit of 1 × 10−9 M OFL. A potential application in environmental monitoring was demonstrated by using this sensing strategy for the determination of OFL in (experimentally spiked) real samples such as tap water and effluent of sewage treatment plant. The proposed nanoaptasensor combines the advantages of the covalent attachment of neatly arranged AuNPs (enlarged active surface area and strengthened electrochemical signal) and the elimination of labels for the amplified detection of OFL, with the covalent attachment of highly specific aptamers to the surface of the modified electrode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000390622300123 Publication Date 2016-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 21 Open Access  
  Notes ; This work was financially supported by the University of Antwerp (BOF), The Research Foundation – Flanders (FWO) and The Hercules Foundation. S. P. is thankful to UA for DOCPRO financial support. C.R. and B.S. acknowledge funding by the Federal Ministry of Education and Research (BMBF) under contract no. 03X0094B. ; Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:135410 Serial 5682  
Permanent link to this record
 

 
Author Rather, J.A.; De Wael, K. pdf  doi
openurl 
  Title C60-functionalized MWCNT based sensor for sensitive detection of endocrine disruptor vinclozolin in solubilized system and wastewater Type A1 Journal article
  Year 2012 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 171/172 Issue Pages 907-915  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) A novel fullerene (C60) functionalized multi-walled carbon nanotubes (MWCNTs) fabricated electrochemical sensor was developed for the sensitive determination of the endocrine disruptor vinclozolin in a solubilized system of cetyltrimethyl ammonium bromide (CTAB). The home-made sensor was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. It was found that the nanocomposite film of C60MWCNTs on GCE exhibits electrocatalytic activity towards vinclozolin reduction and also lowers the reduction overpotential. The influence of the optimization parameters such as pH, effect of CTAB concentration and effect of loading of composite mixture of C60 and MWCNTs on the analytical performance of the sensor was evaluated. Various kinetic parameters such as electron transfer number (n), proton transfer number (m), charge transfer coefficient (α) and diffusion coefficient (D) were also calculated. Under optimized conditions, the squarewave reduction peak current was linear over the concentration range of 2.548.75 μM with the detection and quantification limit of 0.091 μM and 0.3 μM respectively. The fabricated sensor was successfully applied to the detection of vinclozolin in wastewater with good recovery ranging from 97.6 to 103.6%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308572700120 Publication Date 2012-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 26 Open Access  
  Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the authors (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. ; Approved Most recent IF: 5.401; 2012 IF: 3.535  
  Call Number UA @ admin @ c:irua:100576 Serial 5870  
Permanent link to this record
 

 
Author Pilehvar, S.; Rather, J.A.; Dardenne, F.; Robbens, J.; Blust, R.; De Wael, K. pdf  doi
openurl 
  Title Carbon nanotubes based electrochemical aptasensing platform for the detection of hydroxylated polychlorinated biphenyl in human blood serum Type A1 Journal article
  Year 2014 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron  
  Volume 54 Issue Pages 78-84  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) A novel strategy to sense target molecules in human blood serum is achieved by immobilizing aptamers (APTs) on multiwalled carbon nanotubes (MWCNT) modified electrodes. In this work, the aminated aptamer selected for hydroxylated polychlorinated biphenyl (OHPCB) was covalently immobilized on the surface of the MWCNTCOOH modified glassy carbon electrode through amide linkage. The aptamers function as recognition probes for OHPCB by the binding induced folding of the aptamer. The developed aptasensing device was characterized by Electrochemical Impedance Spectroscopy (EIS), Atomic Force Microscopy (AFM) and Fourier Transform Infrared Spectroscopy (FTIR). The aptasensor displayed excellent performance for OHPCB detection with a linear range from 0.16 to 7.5 μM. The sensitivity of the developed aptasensing platform is improved (1×10−8 M) compared to the published report (1×10−6 M) for the determination of OH-PCB (Turner et al., 2007). The better performance of the sensor is due to the unique platform, i.e. the presence of APTs onto electrodes and the combination with nanomaterials. The aptamer density on the electrode surface was estimated by chronocoulometry and was found to be 1.4×1013 molecules cm−2. The validity of the method and applicability of the aptasensor was successfully evaluated by the detection of OHPCB in a blood serum sample. The described approach for aptasensing opens up new perspectives in the field of biomonitoring providing a device with acceptable stability, high sensitivity, good accuracy and precision.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000333071500012 Publication Date 2013-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.78 Times cited 40 Open Access  
  Notes ; We are thankful to UA-DOCPRO and BELSPO for financial support (respectively S. Pilehvar and J. Ahmad Rather). We also thank Prof. A. Covaci (UA) for the kind gift of human blood serum samples. Special thanks to Prof. L Van Vaeck and Y. Vercammen (UA) for AFM imaging and Prof. V. Meynen and M. Kus (LADCA, UA) for performing IR measurements. ; Approved Most recent IF: 7.78; 2014 IF: 6.409  
  Call Number UA @ admin @ c:irua:111262 Serial 5495  
Permanent link to this record
 

 
Author Parrilla, M.; Montiel, F.N.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title Derivatization of amphetamine to allow its electrochemical detection in illicit drug seizures Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 337 Issue Pages 129819  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Amphetamine (AMP) is posing critical issues in our society being one of the most encountered drugs-of-abuse in the current illicit market. The continuous drug production in Europe urges the development of new tools for the rapid on-site determination of illicit drugs such as AMP. However, the direct electrochemical detection of AMP is a challenge because the molecule is non-electroactive at the potential window of conventional graphite SPEs. For this reason, a derivatization step is needed to convert the primary amine into an electroactive oxidizable group. Herein, the rapid electrochemical detection of AMP in seized samples based on the derivatization by 1,2-naphthoquinone-4-sulfonate (NQS) is presented by using square wave voltammetry (SWV) at graphite screen-printed electrodes (SPEs). First, a detailed optimization of the key parameters and the analytical performance is provided. The method showed a sensitivity of 7.9 µA mM-1 within a linear range from 50 to 500 µM, a limit of detection of 22.2 µM, and excellent reproducibility (RSD = 4.3%, n = 5 at 500 µM). Subsequently, the effect of NQS on common cutting agents for the selective detection of AMP is addressed. The comparison of the method with drugs-of-abuse containing secondary and tertiary amines confirms the selectivity of the method. Finally, the concept is applied to quantify AMP in 20 seized samples provided by forensic laboratories, exhibiting an accuracy of 97.3 ± 10.5%. Overall, the fast analysis of samples with the electrochemical profiling of derivatized AMP exhibits a straightforward on-site screening aiming to facilitate the tasks of law enforcement agents in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640386500001 Publication Date 2021-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:176353 Serial 7762  
Permanent link to this record
 

 
Author Amiri-Aref, M.; Raoof, J.B.; Kiekens, F.; De Wael, K. pdf  doi
openurl 
  Title Mixed hemi/ad-micelles coated magnetic nanoparticles for the entrapment of hemoglobin at the surface of a screen-printed carbon electrode and its direct electrochemistry and electrocatalysis Type A1 Journal article
  Year 2015 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron  
  Volume 74 Issue Pages 518-525  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) An efficient procedure for the physical entrapment of proteins within a biocompatible matrix and their immobilization on electrode surfaces is of utmost importance in the fabrication of biosensors. In this work, the magnetic entrapment of hemoglobin (Hb) at the surface of a screen-printed carbon electrode (SPCE), through mixed hemi/ad-micelles (MHAM) array of positively charged surfactant supported iron oxide magnetic nanoparticles (Mag-NPs), is reported. The Hb/MHAM@Mag-NPs biocomposite is captured at SPCE by a super magnet (Hb/MHAM@Mag-NPs/SPCE). To gain insight in the configuration of the mixed hemi/ad-micelles of CTAB at Mag-NPs, zeta-potential measurements were performed. The entrapment of Hb at MHAM@Mag-NPs was confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FT-IR). Direct electron transfer of the Hb intercalated into the composite film showed a pair of well-defined quasi-reversible redox peak at formal potential of −0.255 V vs. Ag/AgCl corresponding to heme Fe(III)/Fe(II) redox couple. It shows that the MHAM@Mag-NPs composite could increase the adsorption ability for Hb, thus provides a facile direct electron transfer between the Hb and the substrate. The proposed biosensor showed excellent electrocatalytic activity to the H2O2 reduction in the wide concentration range from 5.0 to 300.0 µM obtained by amperometric measurement. The MichaelisMenten constant (Km) value of Hb at the modified electrode is 55.4 µM, showing its high affinity. Magnetic entrapment offers a promising design for fast, convenient and effective immobilization of protein within a few minutes for determination of the target molecule in low sample volume at disposable cost-effective SPCE.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360772800071 Publication Date 2015-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.78 Times cited 14 Open Access  
  Notes ; We are thankful for the BOF financial support from the University of Antwerp and Hercules financial support (SEM). ; Approved Most recent IF: 7.78; 2015 IF: 6.409  
  Call Number UA @ admin @ c:irua:126535 Serial 5731  
Permanent link to this record
 

 
Author Yagmurcukardes, N.; Bayram, A.; Aydin, H.; Yagmurcukardes, M.; Acikbas, Y.; Peeters, F.M.; Celebi, C. pdf  doi
openurl 
  Title Anisotropic etching of CVD grown graphene for ammonia sensing Type A1 Journal article
  Year 2022 Publication IEEE sensors journal Abbreviated Journal Ieee Sens J  
  Volume 22 Issue 5 Pages 3888-3895  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Bare chemical vapor deposition (CVD) grown graphene (GRP) was anisotropically etched with various etching parameters. The morphological and structural characterizations were carried out by optical microscopy and the vibrational properties substrates were obtained by Raman spectroscopy. The ammonia adsorption and desorption behavior of graphene-based sensors were recorded via quartz crystal microbalance (QCM) measurements at room temperature. The etched samples for ambient NH3 exhibited nearly 35% improvement and showed high resistance to humidity molecules when compared to bare graphene. Besides exhibiting promising sensitivity to NH3 molecules, the etched graphene-based sensors were less affected by humidity. The experimental results were collaborated by Density Functional Theory (DFT) calculations and it was shown that while water molecules fragmented into H and O, NH3 interacts weakly with EGPR2 sample which reveals the enhanced sensing ability of EGPR2. Apparently, it would be more suitable to use EGRP2 in sensing applications due to its sensitivity to NH3 molecules, its stability, and its resistance to H2O molecules in humid ambient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766276000010 Publication Date 2022-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-437x; 1558-1748 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited 4 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.3  
  Call Number UA @ admin @ c:irua:187257 Serial 7126  
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Dardenne, F.; Blust, R.; De Wael, K. url  doi
openurl 
  Title An improved electrochemical aptasensor for chloramphenicol detection based on aptamer incorporated gelatine Type A1 Journal article
  Year 2015 Publication Sensors Abbreviated Journal Sensors-Basel  
  Volume 15 Issue 4 Pages 7605-7618  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Because of the biocompatible properties of gelatine and the good affinity of aptamers for their targets, the combination of aptamer and gelatine type B is reported as promising for the development of biosensing devices. Here, an aptamer for chloramphenicol (CAP) is mixed with different types of gelatine and dropped on the surface of disposable gold screen printed electrodes. The signal of the CAP reduction is investigated using differential pulse voltammetry. The diagnostic performance of the sensor is described and a detection limit of 1.83 x 10(-10) M is found. The selectivity and the stability of the aptasensor are studied and compared to those of other CAP sensors described in literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000354236100025 Publication Date 2015-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.677 Times cited 21 Open Access  
  Notes ; Ezat Hamidi-Asl was financially supported by IOF-POC (University of Antwerp). ; Approved Most recent IF: 2.677; 2015 IF: 2.245  
  Call Number UA @ admin @ c:irua:126071 Serial 5464  
Permanent link to this record
 

 
Author Rather, J.A.; De Wael, K. pdf  doi
openurl 
  Title Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology Type A1 Journal article
  Year 2013 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 176 Issue Pages 110-117  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Endocrine disruptors (EDCs) are environmental pollutants that, once incorporated into an organism, affect the hormonal balance of humans and various species. Its presence in environment is of great importance in water quality related questions. The proposed method describes the development of an accurate, sensitive and selective sensor for the detection of bisphenol-A (BPA) and its treatment by green technology. A fullerene (C60) fabricated electrochemical sensor was developed for the ultrasensitive detection of BPA. The homemade sensor was characterized by scanning electron microscopy, electrochemical impedance spectroscopy and chronocoulometry. The influence of measuring parameters such as pH and C60 loading on the analytical performance of the sensor was evaluated. Various kinetic parameters such as electron transfer number (n); charge transfer coefficient (α); electrode surface area (A) and diffusion coefficient (D) were also calculated. Under the optimal conditions, the oxidation peak current was linear over the concentration range of 74 nM to 0.23 μM with the detection limit (LOD) of 3.7 nM. The fabricated sensor was successfully applied to the determination of BPA in wastewater samples and it has promising analytical applications for the direct determination of BPA at trace level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319867500017 Publication Date 2012-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 79 Open Access  
  Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the author (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. ; Approved Most recent IF: 5.401; 2013 IF: 3.840  
  Call Number UA @ admin @ c:irua:101055 Serial 5630  
Permanent link to this record
 

 
Author Lenaerts, S.; Honoré, M.; Huyberechts, G.; Roggen, J.; Maes, G. doi  openurl
  Title In situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen/oxygen mixtures at temperatures up to 720 K Type A1 Journal article
  Year 1994 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 19 Issue Pages 478-482  
  Keywords A1 Journal article  
  Abstract (up) FT-IR spectroscopy and impedance measurements of tin dioxide sensor materials at working temperatures up to 450 °C in atmospheres with varying O2/N2 ratio are used as an in situ probe to study the interactions at the surface of the semiconducting oxide. Every diminution in the oxygen content above the sample induces a broad IR absorption band (X-band) between 2300700 cm−1 with a few small peaks in the 1400850 cm−1 region of the spectrum superimposed on it. The X-band results from the enchanced electron concentration in the bulk of the tin dioxide domain. The fine structure is due to the absorption of several kinds of surface oxygen species associated vibration modes. The porous tin dioxide consists of domains were the outward shell is depleted of electrons by the formation of adsorbed O− species on oxygen surface sites, SO(O− species. In our proposed model for the impedance data this gives rise to a parallel RpCp circuit for the domain boundary characteristics and to an Rs parameter for the intradomain resistance. The evolution of these IR and impedance spectroscopic effects with temperature and oxygen content is used to set up, to confirm and refine a physicochemical operation model of tin dioxide gas sensor. This model consists of a sensitizing reaction sequence in the presence of oxygen and a gas-detection reaction sequence when a reducing gas is present. Based on this model, the principal disadvantages of this type of gas sensor become clear. Every factor that influences the concentration of SO(O−) species, causes a conductance modification. If we can control and direct the nature, the number and the arrangement of the tin dioxide domains, a directed development and improvement of the sensor characteristics is possible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1994NN90000040 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:82014 Serial 5962  
Permanent link to this record
 

 
Author Rather, J.A.; Pilehvar, S.; De Wael, K. pdf  doi
openurl 
  Title A graphene oxide amplification platform tagged with tyrosinase-zinc oxide quantum dot hybrids for the electrochemical sensing of hydroxylated polychlorobiphenyls Type A1 Journal article
  Year 2014 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 190 Issue Pages 612-620  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Graphene oxide can act as an amplification platform for the immobilization of a hybrid structure composed of tyrosinase (Tyr) and zinc oxide quantum dots (ZnO QDs). This article describes how this platform increases the sensitivity for the detection of hydroxylated polychlorobiphenyls (OH-PCBs). The adsorption of Tyr (with low isoelectric point) on the positively charged surface of ZnO QDs is based on electrostatic interactions. The scanning electron microscopic images and UVvis spectroscopic analysis demonstrated the adsorption of Tyr on ZnO QDs. The stepwise assembly process of the fabricated biosensor was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The synthesized ZnO QDs and graphene oxide were characterized by Raman spectroscopy, infrared spectroscopy, X-ray diffraction and scanning electron microscopic techniques. The determination of OH-PCBs was carried out by using square wave voltammetry over the concentration range of 2.827.65 μM with a detection limit of 0.15 μM with good reproducibility, selectivity and acceptable stability. The high value of surface coverage of ZnO QDs and small value of MichaelisMenten constant (View the MathML source) confirmed an excellent loading of the Tyr and a high affinity of the biosensor toward the detection of OH-PCBs. This biosensor and the described sensing platform offer a great potential for rapid, cost-effective and on-field analysis of OH-PCBs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326687700082 Publication Date 2013-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 26 Open Access  
  Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the author (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. Sanaz Pilehvar is funded by BOF-DOCPRO UA. We are also thankful to the EMAT (Electron Microscopy for Materials Science) group and Laboratory of adsorption and catalysis group of the University of Antwerp for the XRD, Raman and FTIR characterization of samples (GO and ZnO QDs). ; Approved Most recent IF: 5.401; 2014 IF: 4.097  
  Call Number UA @ admin @ c:irua:110566 Serial 5636  
Permanent link to this record
 

 
Author Ciftci, S.; Cánovas, R.; Neumann, F.; Paulraj, T.; Nilsson, M.; Crespo, G.A.; Madaboosi, N. doi  openurl
  Title The sweet detection of rolling circle amplification : glucose-based electrochemical genosensor for the detection of viral nucleic acid Type A1 Journal article
  Year 2020 Publication Biosensors & Bioelectronics Abbreviated Journal Biosens Bioelectron  
  Volume 151 Issue Pages 112002-112008  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Herein, an isothermal padlock probe-based assay for the simple and portable detection of pathogens coupled with a glucose oxidase (GOx)-based electrochemical readout is reported. Infectious diseases remain a constant threat on a global scale, as in recurring pandemics. Rapid and portable diagnostics hold the promise to tackle the spreading of diseases and decentralising healthcare to point-of-care needs. Ebola, a hypervariable RNA virus causing fatalities of up to 90% for recent outbreaks in Africa, demands immediate attention for bedside diagnostics. The design of the demonstrated assay consists of a rolling circle amplification (RCA) technique, responsible for the generation of nucleic acid amplicons as RCA products (RCPs). The RCPs are generated on magnetic beads (MB) and subsequently, connected via streptavidin-biotin bonds to GOx. The enzymatic catalysis of glucose by the bound GOx allows for an indirect electrochemical measurement of the DNA target. The RCPs generated on the surface of the MB were confirmed by scanning electron microscopy, and among other experimental conditions such as the type of buffer, temperature, concentration of GOx, sampling and measurement time were evaluated for the optimum electrochemical detection. Accordingly, 125 μg mL−1 of GOx with 5 mM glucose using phosphate buffer saline (PBS), monitored for 1 min were selected as the ideal conditions. Finally, we assessed the analytical performance of the biosensing strategy by using clinical samples of Ebola virus from patients. Overall, this work provides a proof-of-concept bioassay for simple and portable molecular diagnostics of emerging pathogens using electrochemical detection, especially in resource-limited settings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record  
  Impact Factor 12.6 Times cited Open Access  
  Notes Approved Most recent IF: 12.6; 2020 IF: 7.78  
  Call Number UA @ admin @ c:irua:184379 Serial 8630  
Permanent link to this record
 

 
Author Volkov, V.V.; van Landuyt, J.; Marushkin, K.; Gijbels, R.; Férauge, C.; Vasilyev, M.G.; Shelyakin, A.A.; Sokolovsky, A.A. pdf  doi
openurl 
  Title LPE growth and characterization of InGaAsP/InP heterostructures: IR-emitting diodes at 1.66 μm: application to the remote monitoring of methane gas Type A1 Journal article
  Year 1997 Publication Sensors and actuators : A : physical Abbreviated Journal Sensor Actuat A-Phys  
  Volume 62 Issue 1/3 Pages 624-632  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Highly effective IR light-emitting diodes operating at the wavelength 1.66 mu m and based on the buried heterostructure In0.88Ga0.12As0.26P0.74/ In0.72Ga0.28As0.62P0.38/In0.53Ga0.47As/InP have been grown by liquid-phase epitaxy (LPE) and characterized in detail by means of transmission electron microscopy (TEM), high-resolution electron microscopy (HREM),electron diffraction (ED), X-ray diffraction (XRD), secondary-ion mass spectrometry (SIMS) and electroluminescence measurements. The InGaAsP epilayers are found to be well lattice matched and of good structural quality. A tentative explanation is presented for the spinodal decomposition observed in InGaAsP alloys. A new type of selective CK, gas sensor has been developed and fabricated an the basis of the IR light-emitting diode mentioned above. Especially designed for the remote control of CH4 gas via fibre optics, an integrated optoelectronic readout scheme has been developed and tested, It is shown that the proposed type of sensor can be used for the quantitative remote control of CH4 gas concentration (0.2-100%) via a fibre glass line up to a distance of 2 x 1 km. (C) 1997 Elsevier Science S.A.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos A1997YD90600029 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-4247; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.499 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.499; 1997 IF: 0.635  
  Call Number UA @ lucian @ c:irua:20455 Serial 1855  
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K. pdf  url
doi  openurl
  Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 348 Issue Pages 130659  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (up) Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000701915600005 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:181307 Serial 7912  
Permanent link to this record
 

 
Author Ortiz-Aguayo, D.; Ceto, X.; De Wael, K.; del Valle, M. url  doi
openurl 
  Title Resolution of opiate illicit drugs signals in the presence of some cutting agents with use of a voltammetric sensor array and machine learning strategies Type A1 Journal article
  Year 2022 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 357 Issue Pages 131345  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (up) In the present work, the resolution and quantification of mixtures of different opiate compounds in the presence of common cutting agents using an electronic tongue (ET) is evaluated. More specifically, ternary mixtures of heroin, morphine and codeine were resolved in the presence of caffeine and paracetamol. To this aim, an array of three carbon screen-printed electrodes were modified with different ink-like solutions of graphite, cobalt (II) phthalocyanine and palladium, and their responses towards the different drugs were characterized by means of square wave voltammetry (SWV). Developed sensors showed a good performance with good linearity at the mu M level, LODs between 1.8 and 5.3 mu M for the 3 actual drugs, and relative standard deviation (RSD) ca. 2% for over 50 consecutive measurements. Next, a quantitative model that allowed the identification and quantification of the individual substances from the overlapped voltammograms was built using partial least squares regression (PLS) as the modeling tool. With this approach, quantification of the different drugs was achieved at the mu M level, with a total normalized root mean square error (NRMSE) of 0.084 for the test subset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000745113900003 Publication Date 2021-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:185446 Serial 8922  
Permanent link to this record
 

 
Author De Wael, K.; De Belder, S.; Pilehar, S.; Van Steenberge, G.; Herrebout, W.; Heering, H.A. url  doi
openurl 
  Title Enzyme-gelatin electrochemical biosensors : scaling down Type A1 Journal article
  Year 2012 Publication Biosensors Abbreviated Journal  
  Volume 2 Issue Pages 101-113  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Molecular Spectroscopy (MolSpec)  
  Abstract (up) In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC) in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2012-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-6374 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:96507 Serial 5606  
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Dardenne, F.; Pilehvar, S.; Blust, R.; De Wael, K. url  doi
openurl 
  Title Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells Type A1 Journal article
  Year 2016 Publication Chemosensors Abbreviated Journal  
  Volume 4 Issue 3 Pages 16  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs) such as gold nanoparticles (Au), silver nanoparticles (Ag), hollow gold nanospheres (HGN), hollow silver nanospheres (HSN), silvergold core shell (Ag@Au), goldsilver core shell (Au@Ag), and silvergold alloy nanoparticles (Ag/Au). Among these nanomaterials, Ag@Au core shell NPs are advantageous for aptasensing applications because the core improves the physical properties and the shell provides chemical stability and biocompatibility for the immobilization of aptamers. Self-assembly of the NPs on a cysteamine film at the surface of a carbon paste electrode is followed by the immobilization of thiolated aptamers at these nanoframes. The nanostructured (Ag@Au) aptadevice for Escherichia coli as a target shows four times better performance in comparison to the response obtained at an aptamer modified planar gold electrode. A comparison with other (core shell) NPs is performed by cyclic voltammetry and differential pulse voltammetry. Also, the selectivity of the aptasensor is investigated using other kinds of bacteria. The synthesized NPs and the morphology of the modified electrode are characterized by UV-Vis absorption spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and electrochemical impedance spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382480000006 Publication Date 2016-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-9040 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes ; Ezat Hamidi-Asl was financially supported by Belspo (University of Antwerp). The authors are thankful to Femke De Croock for her technical support and to Stanislav Trashin for his worthwhile comments on the manuscript. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:135411 Serial 5886  
Permanent link to this record
 

 
Author Truta, F.; Drăgan, A.-M.; Tertis, M.; Parrilla, M.; Slosse, A.; Van Durme, F.; De Wael, K.; Cristea, C. url  doi
openurl 
  Title Electrochemical rapid detection of methamphetamine from confiscated samples using a graphene-based printed platform Type A1 Journal article
  Year 2023 Publication Sensors Abbreviated Journal  
  Volume 23 Issue 13 Pages 6193-18  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (up) Methamphetamine (MAP) is a highly addictive and illegal stimulant drug that has a significant impact on the central nervous system. Its detection in biological and street samples is crucial for various organizations involved in forensic medicine, anti-drug efforts, and clinical diagnosis. In recent years, nanotechnology and nanomaterials have played a significant role in the development of analytical sensors for MAP detection. In this study, a fast, simple, and cost-effective electrochemical sensor is presented that is used for the sensitive detection of MAP in confiscated street samples with a complex matrix. The optimized screen-printed sensor based on a carbon working electrode modified with graphene demonstrated an excellent limit of detection, good sensitivity, and a wide dynamic range (1–500 μM) for the target illicit drug both for standard solutions and real samples (seized samples, tap water, and wastewater samples). It can detect MAP at concentrations as low as 300 nM in real samples. This limit of detection is suitable for the rapid preliminary screening of suspicious samples in customs, ports, airports, and on the street. Furthermore, the sensor exhibits a good recovery rate, indicating its reliability and repeatability. This quality is crucial for ensuring consistent and accurate results during screening processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033277900001 Publication Date 2023-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198181 Serial 8857  
Permanent link to this record
 

 
Author Ilin, A.; Martyshov, M.; Forsh, E.; Forsh, P.; Rumyantseva, M.; Abakumov, A.; Gaskov, A.; Kashkarov, P. pdf  doi
openurl 
  Title UV effect on NO2 sensing properties of nanocrystalline In2O3 Type A1 Journal article
  Year 2016 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 231 Issue 231 Pages 491-496  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanocrystalline indium oxide films with extremely small grains in range of 7-40 nm are prepared by sol-gel method. The influence of grain size on the sensitivity of indium oxide to nitrogen dioxide in low concentration at room temperature is investigated under the UV illumination and without illumination. The sensitivity increases with the decrease of grain sizes when In2O3 is illuminated while in the dark In2O3 with intermediate grain size exhibits the highest response. An explanation of the different behavior of the In2O3 with different grain size sensitivity to NO2 under illumination and in the dark is proposed. We demonstrate that pulsed illumination may be used for NO2 detection at room temperature that significantly reduces the power consumption of sensor. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000374330900055 Publication Date 2016-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 27 Open Access  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ lucian @ c:irua:133630 Serial 4273  
Permanent link to this record
 

 
Author Marikutsa, A.; Yang, L.; Rumyantseva, M.; Batuk, M.; Hadermann, J.; Gaskov, A. pdf  url
doi  openurl
  Title Sensitivity of nanocrystalline tungsten oxide to CO and ammonia gas determined by surface catalysts Type A1 Journal article
  Year 2018 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 277 Issue Pages 336-346  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanocrystalline tungsten oxide with variable particle size and surface area was synthesized by aqueous deposition and heat treatment for use in resistive gas sensors. Surface modification with 1 wt.% Pd and Ru was performed by impregnation to improve the sensitivity to CO and ammonia. Acid and oxidation surface sites were evaluated by temperature-programmed techniques using probe molecules. The surface acidity dropped with increasing particle size, and was weakly affected by additives. Lower crystallinity of WO3 and the presence of Ru species favoured temperature-programmed reduction of the materials. Modifying WO3 increased its sensitivity, to CO at ambient condition for modification by Pd and to NH3 at elevated temperature for Ru modification. An in situ infrared study of the gas – solid interaction showed that the catalytic additives change the interaction route of tungsten oxide with the target gases and make the reception of detected molecules independent of the semiconductor oxide matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453066700042 Publication Date 2018-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156219 Serial 8513  
Permanent link to this record
 

 
Author Vorobyeva, N.; Rumyantseva, M.; Filatova, D.; Konstantinova, E.; Grishina, D.; Abakumov, A.; Turner, S.; Gaskov, A. pdf  doi
openurl 
  Title Nanocrystalline ZnO(Ga) : paramagnetic centers, surface acidity and gas sensor properties Type A1 Journal article
  Year 2013 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 182 Issue Pages 555-564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanocrystalline ZnO and ZnO(Ga) samples with different gallium content were prepared by wet-chemical method. Introduction of gallium leads to the increase of amount of weak acid sites such as surface hydroxyl groups. Gas sensing properties toward 0.22 ppm H2S and NO2 were studied at 100450 °C by DC conductance measurements. The optimal temperature for gas sensing experiments was determined. Sensor signal toward H2S decreases with increase of Ga concentration. The dependence of ZnO(Ga) sensor signal to NO2 on the gallium content has non-monotonous character, which correlates with the change of conductivity of the samples in air and concentration of paramagnetic donor states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000319488800075 Publication Date 2013-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 42 Open Access  
  Notes Hercules; FWO Approved Most recent IF: 5.401; 2013 IF: 3.840  
  Call Number UA @ lucian @ c:irua:107346 Serial 2250  
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Vorobyeva, N.A.; Giebelhaus, I.; Mathur, S.; Chizhov, A.S.; Khmelevsky, N.O.; Aksenenko, A.Y.; Kozlovsky, V.F.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Gaskov, A.M. pdf  url
doi  openurl
  Title p -CoO x / n -SnO 2 nanostructures: New highly selective materials for H 2 S detection Type A1 Journal article
  Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanostructures p-CoOx/n-SnO2 based on tin oxide nanowires have been prepared by two step CVD technique and characterized in detail by XRD, XRF, XPS, HAADF-STEM imaging and EDX-STEM mapping. Depending on the temperature of decomposition of cobalt complex during the second step of CVD synthesis of nanostructures cobalt oxide forms a coating and/or isolated nanoparticles on SnO2 nanowire surface. It was found that cobalt presents in +2 and +3 oxidation states. The measurements of gas sensor properties have been carried out during exposure to CO (14 ppm), NH3 (21 ppm), and H2S (2 ppm) in dry air. The opposite trends were observed in the effect of cobalt oxide on the SnO2 gas sensitivity when detecting CO or NH3 in comparison to H2S. The decrease of sensor signal toward CO and NH3 was attributed to high catalytic activity of Co3O4 in oxidation of these gases. Contrary, the significant increase of sensor signal in the presence of H2S was attributed to the formation of metallic cobalt sulfide and removal of the barrier between p-CoOx and n-SnO2. This effect provides an excellent selectivity of p-CoOx/n-SnO2 nanostructures in H2S detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414151800068 Publication Date 2017-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 13 Open Access Not_Open_Access: Available from 10.10.2019  
  Notes ERA-Net.Plus, 096 FONSENS ; Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:145926 Serial 4710  
Permanent link to this record
 

 
Author Pilehvar, S.; De Wael, K. url  doi
openurl 
  Title Recent advances in electrochemical biosensors based on fullerene-C60 nano-structured platforms Type A1 Journal article
  Year 2015 Publication Biosensors Abbreviated Journal  
  Volume 5 Issue 4 Pages 712-735  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2015-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-6374 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:129157 Serial 5805  
Permanent link to this record
 

 
Author Qurashi, A.; Rather, J.A.; Yamazaki, T.; Sohail, M.; De Wael, K.; Merzougui, B.; Hakeem, A.S. pdf  url
doi  openurl
  Title Swift electrochemical detection of paraben an endocrine disruptor by In2O3 nanobricks Type A1 Journal article
  Year 2015 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 221 Issue Pages 167-171  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Novel indium oxide (In2O3) nanobricks have been prepared by template-less and surfactant-free hydrothermal synthesis method and were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) spectroscopy and field emission scanning electronic microscopy (FESEM). The synthesized In2O3 nanobricks were successfully immobilized on the surface of glassy carbon electrode for the detection of Parabens (butylparaben). Owing to the unique structure and intriguing properties of these In2O3 nanobricks, the nanostructured thin-film electrode has shown an obvious electrocatalytic activity for the detection of butylparaben (BP). The detection limit (LOD) was estimated as 3 s/m and the sensitivity (LOQ) was calculated as 10 s/m and were found to be 0.08 μM and 0.26 μA μM−1 cm−2 respectively. This sensor showed high sensitivity compared with the reported electrochemical sensors for the detection of BP. The fabricated sensor was successfully applied for the detection of butyl paraben in real cosmetic samples with good recovery ranging from 96.0 to 100.3%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362918100021 Publication Date 2015-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: 5.401; 2015 IF: 4.097  
  Call Number UA @ admin @ c:irua:127463 Serial 5859  
Permanent link to this record
 

 
Author Koirala, B.; Rasti, B.; Bnoulkacem, Z.; de Lima Ribeiro, A.; Madriz, Y.; Herrmann, E.; Gestels, A.; De Kerf, T.; Lorenz, S.; Fuchs, M.; Janssens, K.; Steenackers, G.; Gloaguen, R.; Scheunders, P. pdf  doi
openurl 
  Title A multisensor hyperspectral benchmark dataset for unmixing of intimate mixtures Type A1 Journal article
  Year 2024 Publication IEEE sensors journal Abbreviated Journal  
  Volume 24 Issue 4 Pages 4694-4710  
  Keywords A1 Journal article; Engineering sciences. Technology; Vision lab; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract (up) Optical hyperspectral cameras capture the spectral reflectance of materials. Since many materials behave as heterogeneous intimate mixtures with which each photon interacts differently, the relationship between spectral reflectance and material composition is very complex. Quantitative validation of spectral unmixing algorithms requires high-quality ground truth fractional abundance data, which are very difficult to obtain. In this work, we generated a comprehensive laboratory ground truth dataset of intimately mixed mineral powders. For this, five clay powders (Kaolin, Roof clay, Red clay, mixed clay, and Calcium hydroxide) were mixed homogeneously to prepare 325 samples of 60 binary, 150 ternary, 100 quaternary, and 15 quinary mixtures. Thirteen different hyperspectral sensors have been used to acquire the reflectance spectra of these mixtures in the visible, near, short, mid, and long-wavelength infrared regions (350-15385) nm. Overlaps in wavelength regions due to the operational ranges of each sensor and variations in acquisition conditions resulted in a large amount of spectral variability. Ground truth composition is given by construction, but to verify that the generated samples are sufficiently homogeneous, XRD and XRF elemental analysis is performed. We believe these data will be beneficial for validating advanced methods for nonlinear unmixing and material composition estimation, including studying spectral variability and training supervised unmixing approaches. The datasets can be downloaded from the following link: https://github.com/VisionlabHyperspectral/Multisensor_datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001173599400063 Publication Date 2023-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-437x; 1558-1748 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.3; 2024 IF: 2.512  
  Call Number UA @ admin @ c:irua:203094 Serial 9059  
Permanent link to this record
 

 
Author Parrilla, M.; Sena-Torralba, A.; Steijlen, A.; Morais, S.; Maquieira, Á.; De Wael, K. pdf  doi
openurl 
  Title A 3D-printed hollow microneedle-based electrochemical sensing device for in situ plant health monitoring Type A1 Journal article
  Year 2024 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 251 Issue Pages 116131-116139  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (up) Plant health monitoring is devised as a new concept to elucidate in situ physiological processes. The need for increased food production to nourish the growing global population is inconsistent with the dramatic impact of climate change, which hinders crop health and exacerbates plant stress. In this context, wearable sensors play a crucial role in assessing plant stress. Herein, we present a low-cost 3D-printed hollow microneedle array (HMA) patch as a sampling device coupled with biosensors based on screen-printing technology, leading to affordable analysis of biomarkers in the plant fluid of a leaf. First, a refinement of the 3D-printing method showed a tip diameter of 25.9 ± 3.7 μm with a side hole diameter on the microneedle of 228.2 ± 18.6 μm using an affordable 3D printer (<500 EUR). Notably, the HMA patch withstanded the forces exerted by thumb pressing (i.e. 20-40 N). Subsequently, the holes of the HMA enabled the fluid extraction tested in vitro and in vivo in plant leaves (i.e. 13.5 ± 1.1 μL). A paper-based sampling strategy adapted to the HMA allowed the collection of plant fluid. Finally, integrating the sampling device onto biosensors facilitated the in situ electrochemical analysis of plant health biomarkers (i.e. H2O2, glucose, and pH) and the electrochemical profiling of plants in five plant species. Overall, this electrochemical platform advances precise and versatile sensors for plant health monitoring. The wearable device can potentially improve precision farming practices, addressing the critical need for sustainable and resilient agriculture in changing environmental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001198047000001 Publication Date 2024-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 12.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.6; 2024 IF: 7.78  
  Call Number UA @ admin @ c:irua:203204 Serial 8998  
Permanent link to this record
 

 
Author Ferroni, M.; Carotta, M.C.; Guidi, V.; Martinelli, G.; Ronconi, F.; Richard, O.; van Dyck, D.; van Landuyt, J. doi  openurl
  Title Structural characterization of Nb-TiO2 nanosized thick-films for gas sensing application Type P1 Proceeding
  Year 2000 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 68 Issue 1-3 Pages 140-145  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract (up) Pure and Nb-doped TiO2 thick-films were prepared by screen-printing, starting from nanosized powders. Grain growth and crystalline phase modification occurred as consequence of firing at high temperature. It has been shown that niobium addition inhibits grain coarsening and hinders anatase-to-rutile phase transition. These semiconducting films exhibited n-type behavior, while Nb acted as donor-dopant. Gas measurements demonstrated that the films are suitable for CO or NO2 sensing. Microstructural characterization by electron microscopy and differential thermal analysis (DTA) highlights the dependence of gas-sensing behavior on film's properties. (C) 2000 Elsevier Science S.A. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000089218000022 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 51 Open Access  
  Notes Approved Most recent IF: 5.401; 2000 IF: 1.470  
  Call Number UA @ lucian @ c:irua:95167 Serial 3223  
Permanent link to this record
 

 
Author Honoré, M.; Lenaerts, S.; Desmet, J.; Huyberechts, G.; Roggen, J. doi  openurl
  Title Synthesis and characterization of tin dioxide powders for the realization of thick-film gas sensors Type A1 Journal article
  Year 1994 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 19 Issue Pages 621-624  
  Keywords A1 Journal article  
  Abstract (up) Semiconductor gas sensors produced with screen-printing techniques and based on home-made tin dioxide inks are presented. The ink consists of home-made tin dioxide powder added to a polymer solution to make it screen printable on 96% alumina substrates. The major work is performed on the preparation and the characterization of pure undoped tin dioxide powder produced by two different synthetic pathways. Inks prepared with powders from each method are consecutively handled in an identical way to obtain gas sensors. The sensor response towards different gases is measured and compared for both types of starting materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1994NN90000073 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:82013 Serial 5996  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: