|   | 
Details
   web
Records
Author van der Snickt, G.; Legrand, S.; Slama, I.; Van Zuien, E.; Gruber, G.; Van der Stighelen, K.; Klaassen, L.; Oberthaler, E.; Janssens, K.
Title In situ macro X-ray fluorescence (MA-XRF) scanning as a non-invasive tool to probe for subsurface modifications in paintings by PP Rubens Type A1 Journal article
Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 138 Issue 138 Pages 238-245
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Within the last decade, the established synchrotron- and laboratory-based micro-XRF scanning technology inspired the development of mobile instruments that allow performing in situ experiments on paintings on a macro scale. Since the development of the first mobile scanner at the start of this decade, this chemical imaging technique has brought new insights with respect to several iconic paintings, especially in cases when standard imaging techniques such as X-Ray Radiography (XRR) or Infrared Refiectography (IRR) yielded ambiguous results. The ability of scanning MA-XRF to visualise the distribution of elements detected at and below the paint surface renders this spectrometric method particularly helpful for studying painting techniques and revealing materials that remain hidden below the paint surface. The latter aspect is especially relevant for the technical study of works by Pieter Paul Rubens (1577-1640) as this highly productive seventeenth century master is particularly renowned for the continuous application of modifications during (and even after) the entire course of the creative process. In this work, the added value of MA-XRF scanning experiments for visualising these subsurface features is exemplified by interpreting the chemical images obtained on three of Rubens' key works. Special attention is given to three types of adjustments that are particularly relevant for the technical study of Rubens' oeuvre: (1) compositional changes ('pentimenti'), exemplified by results obtained on The Portrait of Helene Fourment (ca. 1638), (2) extensions to the support ('Anstlickungen.), illustrated by imaging experiments performed on the Venus Frigida (1614) and (3) Rubens' intriguing halos around flesh tones, as found amongst others in The Incredulity of Saint Thomas (1613). The ensuing insights in the paint stratigraphy and the underlying supporting structure illustrate the potential of MA-XRF scanning for the non-invasive, comparative study of Rubens' oeuvre. The results do not only augment the understanding of the complex genesis of Rubens' works of art and his efficient painting technique, but prove valuable during conservation treatments as well, as addressed in this paper. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428103000027 Publication Date 2018-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:151564 Serial 5657
Permanent link to this record
 

 
Author Hillen, M.; Sels, S.; Ribbens, B.; Verspeek, S.; Janssens, K.; Van der Snickt, G.; Steenackers, G.
Title Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings Type A1 Journal article
Year 2023 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel
Volume 13 Issue 7 Pages 1-13
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract (down) When studying paintings with active infrared thermography (IRT), minimizing the temperature fluctuations and thermal shock during a measurement becomes important. Under these conditions, it might be beneficial to use lock-in thermography instead of the conventionally used pulse thermography (PT). This study compared the observations made with lock-in thermography (LIT) and pulse phase thermography (PPT) with halogen light excitation. Three distinctly different paintings were examined. The LIT measurements caused smaller temperature fluctuations and, overall, the phase images appeared to have a higher contrast and less noise. However, in the PPT phase images, the upper paint layer was less visible, an aspect which is of particular interest when trying to observe subsurface defects or the structure of the support. The influence of the spectral range of the cameras on the results was also investigated. All measurements were taken with a mid-wave infrared (MWIR) and long wave infrared (LWIR) camera. The results show that there is a significant number of direct reflection artifacts, caused by the use of the halogen light sources when using the MWIR camera. Adding a long-pass filter to the MWIR camera eliminated most of these artifacts. All results are presented in a side-by-side comparison.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000972133900001 Publication Date 2023-03-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7; 2023 IF: 1.679
Call Number UA @ admin @ c:irua:194898 Serial 7333
Permanent link to this record
 

 
Author Janssens, K.; Alfeld, M.; van der Snickt, G.; de Nolf, W.; Vanmeert, F.; Radepont, M.; Monico, L.; et al.
Title The use of synchrotron radiation for the characterization of artists' pigments and paintings Type A1 Journal article
Year 2013 Publication Annual review of analytical chemistry Abbreviated Journal Annu Rev Anal Chem
Volume 6 Issue Pages 399-425
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) We review methods and recent studies in which macroscopic to (sub)microscopic X-ray beams were used for nondestructive analysis and characterization of pigments, paint microsamples, and/or entire paintings. We discuss the use of portable laboratory- and synchrotron-based instrumentation and describe several variants of X-ray fluorescence (XRF) analysis used for elemental analysis and imaging and combined with X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Macroscopic and microscopic (μ-)XRF variants of this method are suitable for visualizing the elemental distribution of key elements in paint multilayers. Technical innovations such as multielement, large-area XRF detectors have enabled such developments. The use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that take place during natural pigment alteration processes. However, synchrotron-based combinations of μ-XRF, μ-XAS, and μ-XRD are suitable for such studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000323887500019 Publication Date 2013-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-1327 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.435 Times cited 46 Open Access
Notes ; ; Approved Most recent IF: 7.435; 2013 IF: 7.814
Call Number UA @ admin @ c:irua:111315 Serial 5902
Permanent link to this record
 

 
Author Centeno, S.A.; Hale, C.; Caro, F.; Cesaratto, A.; Shibayama, N.; Delaney, J.; Dooley, K.; van der Snickt, G.; Janssens, K.; Stein, S.A.
Title Van Gogh's Irises and Roses : the contribution of chemical analyses and imaging to the assessment of color changes in the red lake pigments Type A1 Journal article
Year 2017 Publication Heritage science Abbreviated Journal
Volume 5 Issue Pages 18
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Vincent van Gogh's still lifes Irises and Roses were investigated to shed light onto the degree to which the paintings had changed, both individually and in relation to each other since they were painted, particularly in regard to the fading of the red lakes. Non-invasive techniques, including macroscopic X-ray fluorescence mapping, reflectance imaging spectroscopy, and X-radiography, were combined with microanalytical techniques in a select number of samples. The in-depth microchemical analysis was necessary to overcome the complications that arise when evaluating by non-invasive methods alone the compositions of passages with complex layering and mixing of paints. The results obtained by these two approaches were complemented by color measurements performed on paint cross-sections and on protected edges, and with historical information provided by the artist's own descriptions, early reviews and reproductions, and the data was used to carry out digital color simulations that provided, to a certain extent, a visualization of how the paintings may have originally appeared.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401365400001 Publication Date 2017-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 21 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:143748 Serial 5903
Permanent link to this record
 

 
Author Dik, J.; Janssens, K.; van der Snickt, G.; van der Loeff, L.; Rickers, K.; Cotte, M.
Title Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping Type A1 Journal article
Year 2008 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 80 Issue 16 Pages 6436-6442
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Vincent van Gogh (1853−1890), one of the founding fathers of modern painting, is best known for his vivid colors, his vibrant painting style, and his short but highly productive career. His productivity is even higher than generally realized, as many of his known paintings cover a previous composition. This is thought to be the case in one-third of his early period paintings. Van Gogh would often reuse the canvas of an abandoned painting and paint a new or modified composition on top. These hidden paintings offer a unique and intimate insight into the genesis of his works. Yet, current museum-based imaging tools are unable to properly visualize many of these hidden images. We present the first-time use of synchrotron radiation based X-ray fluorescence mapping, applied to visualize a womans head hidden under the work Patch of Grass by Van Gogh. We recorded decimeter-scale, X-ray fluorescence intensity maps, reflecting the distribution of specific elements in the paint layers. In doing so we succeeded in visualizing the hidden face with unprecedented detail. In particular, the distribution of Hg and Sb in the red and light tones, respectively, enabled an approximate color reconstruction of the flesh tones. This reconstruction proved to be the missing link for the comparison of the hidden face with Van Goghs known paintings. Our approach literally opens up new vistas in the nondestructive study of hidden paint layers, which applies to the oeuvre of Van Gogh in particular and to old master paintings in general.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000258448100039 Publication Date 2008-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 178 Open Access
Notes Approved Most recent IF: 6.32; 2008 IF: 5.712
Call Number UA @ admin @ c:irua:74466 Serial 5906
Permanent link to this record
 

 
Author De Meyer, S.; Vanmeert, F.; Vertongen, R.; Van Loon, A.; Gonzalez, V.; Delaney, J.; Dooley, K.; Dik, J.; van der Snickt, G.; Vandivere, A.; Janssens, K.
Title Macroscopic x-ray powder diffraction imaging reveals Vermeer's discriminating use of lead white pigments in Girl with a Pearl Earring Type A1 Journal article
Year 2019 Publication Science Advances Abbreviated Journal
Volume 5 Issue 8 Pages eaax1975
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) Until the 19th century, lead white was the most important white pigment used in oil paintings. Lead white is typically composed of two crystalline lead carbonates: hydrocerussite [2PbCO(3)center dot Pb(OH)(2)] and cerussite (PbCO3). Depending on the ratio between hydrocerussite and cerussite, lead white can be classified into different subtypes, each with different optical properties. Current methods to investigate and differentiate between lead white subtypes involve invasive sampling on a microscopic scale, introducing problems of paint damage and representativeness. In this study, a 17th century painting Girl with a Pearl Earring (by Johannes Vermeer, c. 1665, collection of the Mauritshuis, NL) was analyzed with a recently developed mobile and noninvasive macroscopic x-ray powder diffraction (MA-XRPD) scanner within the project Girl in the Spotlight. Four different subtypes of lead white were identified using XRPD imaging at the macroscopic and microscopic scale, implying that Vermeer was highly discriminatory in his use of lead white.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000491121200021 Publication Date 2019-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes ; K.J. wishes to thank the Research Council of the University of Antwerp for financial support through GOA project SolarPaint. Also, FWO, Brussels is acknowledged for financial support through grants G056619N and G054719N. The support of InterReg programme Smart*Light is appreciated. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:163815 Serial 5700
Permanent link to this record
 

 
Author Janssens, K.; Legrand, S.; van der Snickt, G.; Vanmeert, F.
Title Virtual archaeology of altered paintings : multiscale chemical imaging tools Type A1 Journal article
Year 2016 Publication Elements Abbreviated Journal Elements
Volume 12 Issue 1 Pages 39-44
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Understanding how painted works of art were constructed, layer-by-layer, requires a range of macroscopic and microscopic X-ray and infrared-based analytical methods. Deconstructing complex assemblies of paints horizontally across a picture and vertically through it provides insight into the detailed production process of the art work and on the painting techniques and styles of its maker. The unwanted chemical transformations that some paint pigments undergo are also detectable; these changes can alter the paint's optical properties. Understanding the chemistry behind such paint degradation gives conservators vital clues to counter these effects and is an invaluable asset in protecting these cultural artefacts for future generations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370987700007 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1811-5209 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.038 Times cited 12 Open Access
Notes ; ; Approved Most recent IF: 4.038
Call Number UA @ admin @ c:irua:132301 Serial 5904
Permanent link to this record
 

 
Author van der Snickt, G.; Martins, A.; Delaney, J.; Janssens, K.; Zeibel, J.; Duffy, M.; McGlinchey, C.; Van Driel, B.; Dik, J.
Title Exploring a hidden painting below the surface of Rene Magritte's Le Portrait Type A1 Journal article
Year 2016 Publication Applied spectroscopy Abbreviated Journal Appl Spectrosc
Volume 70 Issue 1 Pages 57-67
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Two state-of-the-art methods for non-invasive visualization of subsurface (or overpainted) pictorial layers present in painted works of art are employed to study Le portrait, painted by Belgian artist Rene Magritte in 1935. X-ray radiography, a commonly used method for the nondestructive inspection of paintings, had revealed the presence of an underlying figurative composition, part of an earlier Magritte painting entitled La pose enchantee (1927) which originally depicted two full length nude female figures with exaggerated facial features. On the one hand, macroscopic X-ray fluorescence analysis (MA-XRF), a method capable of providing information on the distribution of the key chemical elements present in many artists' pigments, was employed. The ability of the X-rays to penetrate the upper layer of paint enabled the imaging of the facial features of the female figure and provided information on Magritte's palette for both surface and hidden composition. On the other hand, visible and near infrared hyperspectral imaging spectroscopies in transmission mode were also used, especially in the area of the table cloth in order to look through the upper representation and reveal the pictorial layer(s) below. MA-XRF provided elemental information on the pigment distributions in both the final painting and the prior whereas the transmission mode provided information related to preparatory sketches as well as revealing differences between the paints used in both compositions. These results illustrate very well the manner in which the two imaging methods complement each other, both in the sense of providing different types of information on the nature and presence of paint components/pigments and in the sense of being optimally suited to easily penetrate through different types of overpaint.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368604500007 Publication Date 2016-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-7028 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.529 Times cited 13 Open Access
Notes ; GvdS and KJ acknowledge the support of the Fund Inbev-Baillet Latour. JKD acknowledges support from the Andrew Mellon Foundation and the National Science Foundation. BvD and JD acknowledge support from The Netherlands Organisation for Scientific Research (NWO). ; Approved Most recent IF: 1.529
Call Number UA @ admin @ c:irua:131544 Serial 5620
Permanent link to this record
 

 
Author van Loon, A.; Noble, P.; Krekeler, A.; van der Snickt, G.; Janssens, K.; Abe, Y.; Nakai, I.; Dik, J.
Title Artificial orpiment, a new pigment in Rembrandt's palette Type A1 Journal article
Year 2017 Publication Heritage science Abbreviated Journal
Volume 5 Issue Pages 26
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) This paper reports on how the application of macro X-ray fluorescence (MA-XRF) imaging, in combination with the re-examination of existing paint cross-sections, has led to the discovery of a new pigment in Rembrandt's palette: artificial orpiment. In the NWO Science4Arts 'ReVisRembrandt' project, novel chemical imaging techniques are being developed and applied to the study of Rembrandt's late paintings in order to help resolve outstanding questions and to gain a better understanding of his late enigmatic painting technique. One of the selected case studies is the Portrait of a Couple as Isaac and Rebecca, known as 'The Jewish Bride', dated c. 1665 and on view in the Rijksmuseum. During the re-installation of the Rijksmuseum in 2013, the picture was scanned using the Bruker M6 Jetstream MAXRF scanner. The resulting elemental distribution maps made it possible to distinguish many features in the painting, such as bone black remains of the original hat (P, Ca maps), and the now discolored smalt-rich background (Co, Ni, As, K maps). The arsenic (As) map also revealed areas of high-intensity in Isaac's sleeve and Rebecca's dress where it could be established that it was not related with the pigment smalt that also contains arsenic. This pointed to the presence of a yellow or orange arsenic-containing pigment, such as realgar or orpiment that is not associated with the artist's palette. Subsequent examination of existing paint cross-sections from these locations taken by Karin Groen in the 1990s identified isolated, almost perfectly round particles of arsenic sulfide. The round shape corresponds with published findings on a purified form of artificial orpiment glass obtained by dry processing, a sublimation reaction. In bright field, the particles characteristically exhibit a dark cross in the middle caused by internal light reflections. The results of additional non-invasive techniques (portable XRD and portable Raman) are discussed, as well as the implications of this finding and how it fits with Rembrandt's late experimental painting technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404916400001 Publication Date 2017-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes ; This research is part of the Science4Arts Program, funded by the Netherlands Organization for Scientific Research (NWO) (Grant No. SFA-11-12). GVdS is supported by the Baillet Latour Fund. The authors would like to thank Lisette Vos, Rijksmuseum Amsterdam, for assisting with the MA-XRF scanning; Arisa Izumi and Airi Hirayama, students of the Tokyo University of Science, and Frederik Vanmeert, University of Antwerp, for assisting with the pXRD and pRaman measurements. We are also grateful to Rob Erdmann, Rijksmuseum Amsterdam, who made the curtain viewer to facilitate comparison of the visible image with the elemental distribution maps of the painting. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:144864 Serial 5479
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Hendriks, E.; Vanmeert, F.; van der Snickt, G.; Cotte, M.; Falkenberg, G.; Brunetti, B.G.; Miliani, C.
Title Evidence for degradation of the chrome yellows in Van Gogh's sunflowers : a study using noninvasive in situ methods and synchrotron-radiation-based x-ray techniques Type A1 Journal article
Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 54 Issue 47 Pages 13923-13927
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) This paper presents firm evidence for the chemical alteration of chrome yellow pigments in Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam). Noninvasive in situ spectroscopic analysis at several spots on the painting, combined with synchrotron-radiation-based X-ray investigations of two microsamples, revealed the presence of different types of chrome yellow used by Van Gogh, including the lightfast PbCrO4 and the sulfur-rich PbCr1-xSxO4 (x approximate to 0.5) variety that is known for its high propensity to undergo photoinduced reduction. The products of this degradation process, i.e., Cr-III compounds, were found at the interface between the paint and the varnish. Selected locations of the painting with the highest risk of color modification by chemical deterioration of chrome yellow are identified, thus calling for careful monitoring in the future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000367722500009 Publication Date 2015-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 24 Open Access
Notes ; We acknowledge financial support from the Italian MIUR project SICH-PRIN (2010329WPF_001) and BELSPO (Brussels) Project S2-ART (SD04A), GOA “SOLARPAINT” (Research Fund Antwerp University, BOF-2015), and FWO (Brussels) projects G.0C12.13, G.0704.08, G.01769.09. We thank ESRF (EC-1051, HG-26) and DESY (I-20120312 EC) for beamtime grants received. Noninvasive analysis of Sunflowers were supported by the EU FP7 programme CHARISMA (Grant 228330) and the Fund Inbev-Baillet Latour (Brussels). L.M. acknowledges financial support from the CNR Short Term Mobility Programme-2013. We thank Muriel Geldof, Luc Megens, Suzan de Groot (The Netherlands Cultural Heritage Agency, RCE), Chiara Grazia, David Buti (CNR-ISTM and SMAArt Centre), and the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994; 2015 IF: 11.261
Call Number UA @ admin @ c:irua:131110 Serial 5617
Permanent link to this record
 

 
Author Cagno, S.; van der Snickt, G.; Legrand, S.; Caen, J.; Patin, M.; Meulebroeck, W.; Dirkx, Y.; Hillen, M.; Steenackers, G.; Rousaki, A.; Vandenabeele, P.; Janssens, K.
Title Comparison of four mobile, non‐invasive diagnostic techniques for differentiating glass types in historical leaded windows : MA‐XRF , UV–Vis–NIR, Raman spectroscopy and IRT Type A1 Journal article
Year 2020 Publication X-Ray Spectrometry Abbreviated Journal X-Ray Spectrom
Volume Issue Pages xrs.3185-17
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) This paper critically compares the performance of four non-invasive techniques that match the accuracy, flexibility, time-efficiency, and transportability required for in situ characterization of leaded glass windows: macroscopic X-ray fluorescence imaging (MA-XRF), UV-Vis-NIR, Raman spectroscopy, and infrared thermography (IRT). In order to compare the techniques on equal grounds, all techniques were tested independently of each other by separate research groups on the same historical leaded window tentatively dated to the 17th century, without prior knowledge. The aim was to assess the ability of these techniques to document the conservation history of the window by classifying and grouping the colorless glass panes, based on differences in composition. IRT, MA-XRF and UV-Vis-NIR spectroscopy positively distinguished at least two glass groups, with MA-XRF providing the most detailed chemical information. In particular, based on the ratio between the network modifier (K) and network stabilizer (Ca) and on the level of colorants and decolorizers (Fe, Mn, As), the number of plausible glass families could be strongly reduced. In addition, UV-Vis-NIR detected cobalt at ppm level and gave more specific information on the chromophore Fe2+/Fe(3+)ratio. Raman spectroscopy was hampered by fluorescence caused by the metal ions of the decolorizer in most of the panes, but nevertheless identified one group as HLLA.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000561869600001 Publication Date 2020-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.2 Times cited Open Access
Notes ; Belgian Federal Science Policy Office, Grant/Award Number: BR/175/A3/FENESTRA; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: 12X1919N; Baillet-Latour Fund ; Approved Most recent IF: 1.2; 2020 IF: 1.298
Call Number UA @ admin @ c:irua:170972 Serial 6473
Permanent link to this record
 

 
Author Monico, L.; Hendriks, E.; Geldof, M.; Miliani, C.; Janssens, K.; Brunetti, B.G.; Cotte, M.; Vanmeert, F.; Chieli, A.; Van der Snickt, G.; Romani, A.; Melo, M.J.
Title Chemical alteration and colour changes in the Amsterdam sunflowers Type H1 Book chapter
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 125-158 T2 - Van Gogh’s Sunflowers illuminated – a
Keywords H1 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) This chapter provides a description of colour changes in the Amsterdam Sunflowers due to chemical alteration of pigments, with a focus on geranium lakes and chrome yellows. The brilliant and forceful colours of these and other late nineteenth-century synthetic materials offered artists such as Vincent van Gogh new means of artistic expression that exploited a range of contrasting hues and tints. However, geranium lakes have a strong tendency to fade and chrome yellows to darken under the influence of light. Van Gogh, like other artists of his day, was aware of this drawback, yet he continued to favour the use of both pigments up until his death in July 1890 due to the unparalleled effects they gave. In April 1888, Vincent wrote to his brother Theo: Van Gogh's use of unstable colours opens a series of questions regarding the extent to which colour change affects the way his paintings look today, as discussed here in relation to the Amsterdam Sunflowers. Furthermore, given the frequency with which geranium lakes and chrome yellows occur in Van Gogh's paintings of the period 1888–90 and the predominance of chrome yellows in Sunflowers, it becomes important to understand the factors that can drive these processes of deterioration in order to develop appropriate strategies for conserving the artist's works.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-94-6372-532-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190779 Serial 7640
Permanent link to this record
 

 
Author Hendriks, E.; Geldof, M.; van den Berg, K.J.; Monico, L.; Miliani, C.; Moretti, P.; Iwanicka, M.; Targowski, P.; Megens, L.; de Groot, S.; van Keulen, H.; Janssens, K.; Vanmeert, F.; van der Snickt, G.
Title Conservation of the Amsterdam sunflowers : from past to future Type H1 Book chapter
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 175-205 T2 - Van Gogh’s Sunflowers illuminated – a
Keywords H1 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) This chapter lays out a conservation timeline, from past to future, for the Amsterdam version of Van Gogh's Sunflowers. It starts by considering the restoration history of the painting in order to assess its current physical state, and looks ahead to formulate an appropriate strategy for future conservation treatment and display. Due attention is paid to the two recorded episodes of restoration performed in 1927 and 1961 by the Dutch restorer, Jan Cornelis Traas. Based on physical and chemical investigation of Sunflowers we attempt to reconstruct what these former treatments (which are barely documented) entailed and consider the repercussions for the present condition of the painting. The former interventions by Traas also serve as a benchmark to reflect on current choices made, highlighting the extent to which ideas and methodologies have continued to evolve over the past century as conservation has moved further away from being a singularly craft-based activity to become an established historical and scientific discipline underpinned by ethical guidelines. Jan Cornelis Traas (1898–1984) As mentioned, the two main recorded interventions to the Amsterdam Sunflowers may be associated with the Dutch restorer, Jan Cornelis Traas, who treated the picture in 1927, close to the start of his career, and again in 1961, shortly before he retired. Traas was the first restorer to be appointed at the Mauritshuis in The Hague where he worked from 1931 to 1962 and treated hundreds of paintings, including iconic masterpieces such as Girl with a Pearl Earring by Johannes Vermeer. Yet despite the magnitude and importance of his restoration oeuvre, J.C. Traas (as he is usually referred to in surviving documents), has remained somewhat obscure. He is shown here in the only known surviving photograph of him at work, shortly before he retired (fig. 7.1). Unlike his illustrious contemporaries, A. Martin de Wild (1899–1969) and Helmut Ruhemann (1891–1973), for example, Traas did not publish anything, he appears to have kept no records of his work and no personal archive is known. However, the study of some newly discovered historical documents, combined with physical examination of Sunflowers and a large number of other works he treated, allows us to recover an idea of his working practices and approaches viewed within the context of his day.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-94-6372-532-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190780 Serial 7727
Permanent link to this record
 

 
Author Geldof, M.; Monico, L.; Johnson, D.H.; Miliani, C.; Romani, A.; Grazia, C.; Buti, D.; Brunetti, B.G.; Janssens, K.; Van der Snickt, G.; Vanmeert, F.
Title Methods and materials of the Amsterdam sunflowers Type H1 Book chapter
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 85-123 T2 - Van Gogh’s Sunflowers illuminated – ar
Keywords H1 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) This chapter explains the materials and techniques employed in the Amsterdam Sunflowers, enabling a comparison with the London version described in chapter 3. Building upon the 2016 article published in the National Gallery Technical Bulletin, it incorporates the latest findings gained by computer-assisted methods used to characterize the canvas support, as well as in-situ campaigns of non-invasive investigation together with further analysis of microscopic paint samples. The chapter sequence follows the steps in Van Gogh's working practice. Starting with the canvas, automated analysis of the weave enables the provenance of the canvas to be traced back to a particular roll of linen ordered by Van Gogh. Combining technical evidence with knowledge of historical manufacturing techniques further allows us to reconstruct the way in which Van Gogh divided his canvas roll into pieces used for Sunflowers and other paintings. We go on to consider how, with the original painting at hand, he used charcoal to transfer the motif of the London Sunflowers onto his blank canvas. Despite careful planning of the composition, an adjustment was required late in the working process, when Van Gogh added a painted wooden strip to extend the background above the flower at the top edge of the canvas. The artist's process of working up the composition in paint is described, paying special attention to his use of colour. The pigments and pigment mixtures used in the Amsterdam Sunflowers have been comprehensively mapped and are compared with the London picture, with discussion of some similarities and differences that account for the distinctive colour scheme of each painting. This understanding of colour application in the Amsterdam Sunflowers lays the foundation for subsequent chapters that will go on to consider the impact of light-induced colour changes that have taken place over time, and the related need to define appropriate lighting guidelines for the future safe preservation of this painting and others made with similar materials (chapters 5 and 7).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-94-6372-532-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190781 Serial 8223
Permanent link to this record
 

 
Author De Keyser, N.; van der Snickt, G.; Van Loon, A.; Legrand, S.; Wallert, A.; Janssens, K.
Title Jan Davidsz. de Heem (1606-1684): a technical examination of fruit and flower still lifes combining MA-XRF scanning, cross-section analysis and technical historical sources Type A1 Journal article
Year 2017 Publication Heritage science Abbreviated Journal
Volume 5 Issue Pages 38
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) This article discusses the technical examination of five flower and fruit still life paintings by the seventeenth century artist Jan Davidsz. de Heem (1606-1684). The painter is known for his meticulously composed and finely detailed still life paintings and is a master in imitating the surface textures of various fruits, flowers, and objects. Macro X-ray fluorescence (MA-XRF) scanning experiments were supplemented with a study of paint cross-sections and contemporary art technical sources with the aim of reconstructing the complex build-up of the overall lay-in of the composition and individual subjects. MA-XRF provided information on the distribution of key chemical elements present in painting materials and made it possible to recapture evidence of the different phases in the artist's working methods: from the application of the ground layers, to De Heem's characteristic oval-shaped underpaintings, and finally, the superposition of multiple paint layers in the working up of the paintings. SEM-EDX analysis of a limited number of paint cross-sections complemented the chemical images with local and layer-specific information on the microscale, providing more accuracy on the layer sequence and enabling the study of elements with a low atomic number for which the non-invasive technique is less sensitive. The results from this technical examination were in addition compared with recipes and paint instructions, to obtain a better understanding of the relation between the general practice and actual painting technique of Jan Davidsz. de Heem. Ultimately, this combined approach uncovered new information on De Heem's artistic practice and demonstrated the complementarity of the methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000410414000001 Publication Date 2017-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access
Notes ; This work is an extension of the Master thesis in Conservation-restoration (University of Antwerp, 2015-2016) of Nouchka De Keyser. Thesis supervisors were Dr. Geert Van der Snickt (Cultural heritage scientist, AXES, UA) and Dr. Olivier Schalm (Research scientist, UA). This research was supported by the Baillet Latour fund. The authors gratefully acknowledge the involved institutes (Rijksmuseum, the Mauritshuis and KMSKA) for the opportunity to examine the still life paintings of Jan Davidsz. de Heem. A great thanks is therefore due to Petria Noble, Pieter Roelofs, Anna Krekeler, Susan Smelt, Robert Erdmann, Abbie Vandivere, Edwin Buijsen and Masayuki Hinoue. SEM-EDX measurements were performed by Katrien Keune, scientific researcher at the Rijksmuseum. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:145628 Serial 5681
Permanent link to this record
 

 
Author De Meyer, S.; Vanmeert, F.; Vertongen, R.; van Loon, A.; Gonzalez, V.; van der Snickt, G.; Vandivere, A.; Janssens, K.
Title Imaging secondary reaction products at the surface of Vermeer's Girl with the Pearl Earring by means of macroscopic X-ray powder diffraction scanning Type A1 Journal article
Year 2019 Publication Heritage science Abbreviated Journal
Volume 7 Issue 1 Pages 67
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) The use of non-invasive macroscopic imaging techniques is becoming more prevalent in the field of cultural heritage, especially to avoid invasive procedures that damage valuable artworks. For this purpose, an X-ray powder diffraction scanner (MA-XRPD) capable of visualising crystalline compounds in a highly specific manner was recently developed. Many inorganic pigments present in paintings fall into this category of materials. In this study, the 17th century oil painting Girl with a Pearl Earring (c. 1665) by Johannes Vermeer was analysed with a combination of transmission and reflection mode MA-XRPD. By employing this scanner in reflection mode, the relative sensitivity for compounds that are present at the paint surface could be increased, establishing it as a highly relevant technique for investigating the degradation processes that are ongoing at paint surfaces. Many of the original pigments employed by Vermeer could be identified, along with four secondary alteration products: gypsum (CaSO4 center dot 2H(2)O), anglesite (PbSO4), palmierite (K2Pb(SO4)(2)) and weddellite (CaC2O4 center dot 2H(2)O). The formation of gypsum was linked to the presence of chalk in the upper glaze layer while the formation of palmierite and weddellite is driven by the presence of lake pigments (and their substrates). In this manner, MA-XRPD can also be used to pinpoint locations relevant for sampling and synchrotron mu-XRPD analysis, which provides information on the microscopic make-up of the paint. A paint cross-section taken from an area rich in palmierite was analysed with synchrotron mu-XRPD, which confirmed the presence of this secondary compound at the interface of the upper paint layer with the ground layer as well as the presence of anglesite in the ground layer. The capacity of MA-XRPD to identify and chart secondary alteration products in a non-invasive manner has only very recently been demonstrated and makes it a highly relevant technique for the assessment of the chemical condition of works of art.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000484938100001 Publication Date 2019-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access
Notes ; The authors would like to thank Interreg Vlaanderen-Nederland for funding to help develop the MA-rXRPD scanner. This project was made possible with support from the Johan Maurits Compagnie Foundation. This study was supported by Interreg and CALIPSOplus (Grant 730872). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:162801 Serial 5653
Permanent link to this record
 

 
Author Simoen, J.; De Meyer, S.; Vanmeert, F.; De Keyser, N.; Avranovich, E.; van der Snickt, G.; Van Loon, A.; Keune, K.; Janssens, K.
Title Combined Micro- and Macro scale X-ray powder diffraction mapping of degraded Orpiment paint in a 17th century still life painting by Martinus Nellius Type A1 Journal article
Year 2019 Publication Heritage science Abbreviated Journal
Volume 7 Issue 1 Pages 83
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) The spontaneous chemical alteration of artists' pigment materials may be caused by several degradation processes. Some of these are well known while others are still in need of more detailed investigation and documentation. These changes often become apparent as color modifications, either caused by a change in the oxidation state in the original material or the formation of degradation products or salts, via simple or more complex, multistep reactions. Arsenic-based pigments such as orpiment (As2S3) or realgar (alpha-As4S4) are prone to such alterations and are often described as easily oxidizing upon exposure to light. Macroscopic X-ray powder diffraction (MA-XRPD) imaging on a sub area of a still life painting by the 17th century Dutch painter Martinus Nellius was employed in combination with microscopic (mu-) XRPD imaging of a paint cross section taken in the area imaged by MA-XRPD. In this way, the in situ formation of secondary metal arsenate and sulfate species and their migration through the paint layer stack they originate from could be visualized. In the areas originally painted with orpiment, it could be shown that several secondary minerals such as schultenite (PbHAsO4), mimetite (Pb-5(AsO4)(3)Cl), palmierite (K2Pb(SO4)(2)) and syngenite (K2Ca(SO4)(2)center dot H2O) have formed. Closer inspection of the cross-sectioned paint layer stack with mu-XRPD illustrates that the arsenate minerals schultenite and mimetite have precipitated at the interface between the orpiment layer and the layer below that is rich in lead white, i.e. close to the depth of formation of the arsenate ions. The sulfate palmierite has mostly precipitated at the surface and upper layers of the painting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000490592700001 Publication Date 2019-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; The authors acknowledge financial support from the NWO (The Hague) Science4Arts 'ReVisRembrandt' project (AvL, JD), the GOA Project Solarpaint (University of Antwerp Research Council) (SdM) and the METOX project (Belgian Federal Science Policy) (FvM). Special thanks go to the support received from FWO, Brussels via projects G056619 N and G054719 N (GvdS, KJ) and from NWO, The Hague via project NICAS/3D2P (KK, NdK). Parts of the MA-XRPD scanner could be purchased thanks to InterReg Project Smart*Light. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:163693 Serial 5521
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Alfeld, M.; Noble, P.; van Loon, A.; Delaney, J.; Conover, D.; Zeibel, J.; Dik, J.
Title Rembrandt's 'Saul and David' (c. 1652) : use of multiple types of smalt evidenced by means of non-destructive imaging Type A1 Journal article
Year 2016 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 126 Issue Pages 515-523
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) The painting Saul and David, considered to date from c. 1652 and previously attributed to Rembrandt van Rijn and/or his studio, is a complex work of art that has been recently subjected to intensive investigation and conservation treatment. The goal of the research was to give insight into the painting's physical construction and condition in preparation for conservation treatment. It was also anticipated that analysis would shed light on authenticity questions and Rembrandt's role in the creation of the painting. The painting depicts the Old Testament figures of King Saul and David. At left is Saul, seated, holding a spear and wiping a tear from his eye with a curtain. David kneels before him at the right playing his harp. In the past, the large sections with the life-size figures were cut apart and later reassembled. A third piece of canvas was added to replace a missing piece of canvas above the head of David. As part of the investigation into the authenticity of the curtain area, a number of paint micro samples were examined with LM and SEM-EDX. Given that the earth, smalt and lake pigments used in the painting could not be imaged with traditional imaging techniques, the entire painting was also examined with state of the art non-destructive imaging techniques. Special attention was devoted to the presence of cobalt-containing materials, specifically the blue glass pigment smalt considered characteristic for the late Rembrandt. A combination of quantitative electron microprobe analysis and macroscopic X-ray fluorescence scanning revealed that three types of cobalt-containing materials are present in the painting. The first type is a cobalt drier that was found in the overpaint used to cover up the canvas inset and the joins that were added in the 19th century. The other two Co-containing materials are part of the original paint used by Rembrandt and comprise two varieties of smalt, a K-rich glass pigment that derives its gray-blue color by doping with Co-ions. Smalt paint with a higher Ni content (NiO:CoO ratio of around 1:4) was used to depict the blue stripes in Saul's colorful turban, while smalt with a lower Ni content was employed (NiO:CoO ratio of around 1:5) for the broad expanses of Saul's garments. The presence of two types of smalt not only supports the recent re-attribution of the painting to Rembrandt, but also that the picture was painted in two phases. Saul's dark red garment is painted in a rough, “loose” manner and the now discolored smalt-rich layer was found to have been partially removed during a past restoration treatment/s. In contrast, the blue-green smalt in the turban is much better preserved and provides a colorful accent. While the use of different types of smalt in a Rembrandt painting has been previously identified using quantitative EDX analysis of paint cross-sections, to the best of our knowledge this is the first time such a distinction has been observed in a 17th-century painting using non-destructive imaging techniques. In addition to the XRF-based non-invasive elemental mapping, hyperspectral imaging in the visual to near-infrared (VNIR) region was also carried out. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373647500063 Publication Date 2016-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 18 Open Access
Notes ; This research is part of the ReVisualising late Rembrandt: Developing and Applying New Imaging Techniques research project, supported by the Science4Arts research program of the Netherlands Organisation for Scientific Research (NWO, The Hague, NL, ReVisRembrandt project) and the National Science Foundation (NSF, Washington DC, USA, award 1041827). We would like to thank colleagues of the Mauritshuis (The Hague, NL) and the Dutch Cultural Heritage Agency (RCE) in Rijswijk, NL for their support and assistance during the scanning of the Saul and David painting. The GOA project “SOLARPAINT” (University of Antwerp) and the Fund Baillet Latour (Brussels, B) are acknowledged for financial support to GvdS and KJ. We also like to acknowledge the help of Eliza Longhini and Stijn Legrand during some of the XRF scanning stages. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:133258 Serial 5813
Permanent link to this record
 

 
Author Harth, A.; van der Snickt, G.; Schalm, O.; Janssens, K.; Blanckaert, G.
Title The young Van Dyck's fingerprint : a technical approach to assess the authenticity of a disputed painting Type A1 Journal article
Year 2017 Publication Heritage science Abbreviated Journal
Volume 5 Issue Pages 22-13
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) The painting Saint Jerome, part of the collection of the Maagdenhuis Museum (Antwerp, Belgium), is attributed to the young Anthony van Dyck (1613-1621) with reservations. The painting displays remarkable compositional and iconographic similarities with two early Van Dyck works (1618-1620) now in Museum Boijmans van Beuningen (Rotterdam) and Nationalmuseum (Stockholm). Despite these similarities, previous art historical research did not result in a clear attribution to this master. In this study, the works authenticity as a young Van Dyck painting was assessed from a technical perspective by employing a twofold approach. First, technical information on Van Dycks materials and techniques, here identified as his fingerprint, were defined based on a literature review. Second, the materials and techniques of the questioned Saint Jerome painting were characterized by using complementary imaging techniques: infrared reflectography, X-ray radiography and macro X-ray fluorescence scanning. The insights from this non-invasive research were supplemented with analysis of a limited number of cross-sections by means of field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The results demonstrated that the questioned paintings materials and techniques deviate from Van Dycks fingerprint, thus making the authorship of this master very unlikely.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403971300001 Publication Date 2017-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes ; The authors are grateful to the staff of the Maagdenhuis Museum Antwerp, especially to Daniel Christiaens and Rudi van Velthoven, for their cooperation and enthusiastic support. Prof. Em. Claudine A. Chavannes-Mazel and Ph. D. student Alice Taatgen (University of Amsterdam) are acknowledged for the IRR recordings. We also would like to acknowledge Dr. Christina Currie (KIK/IRPA) and Catherine Fondaire (KIK/IRPA) for the XRR, and Eva Grieten (EMAT, University of Antwerp) for the FE-SEM-EDX. Finally, the authors wish to thank Prof. Dr. Katlijne van der Stighelen (University of Leuven) and Prof. Dr. Maximilaan Martens (Ghent University) for their art historical insights and additional comments. This research was supported by the Baillet Latour fund and Research Foundation Flanders (FWO). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:143633 Serial 5923
Permanent link to this record
 

 
Author Trentelman, K.; Janssens, K.; van der Snickt, G.; Szafran, Y.; Woollett, A.T.; Dik, J.
Title Rembrandt's An Old Man in Military Costume: the underlying image re-examined Type A1 Journal article
Year 2015 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater
Volume 121 Issue 3 Pages 801-811
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) The painting An Old Man in Military Costume in the J. Paul Getty Museum, by Rembrandt Harmensz van Rijn, was studied using two complementary, element-specific imaging techniques-neutron activation autoradiography (NAAR) and macro-X-ray fluorescence (MA-XRF) mapping-to reveal the second, hidden painting. NAAR provided a strong image of the face and cloak of the underlying figure, along with an indication of the chemical composition. The single-element distribution maps produced by MA-XRF mapping provided additional details into the shape of the underlying image and the composition of the pigments used. The underlying figure's face is richer in mercury, indicative of the pigment vermilion, than the face of the figure on the surface. Likewise, the cloak of the underlying figure is richer in copper than the surface figure though the identity of the copper-containing pigment cannot be determined from these data. The use of iron earth pigments, specifically Si-rich umbers, is indicated through the complementary information provided by the NAAR and MA-XRF maps. These data are used to create a false color digital reconstruction, yielding the most detailed representation of the underlying painting to date.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364914100003 Publication Date 2015-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.455 Times cited 22 Open Access
Notes ; The authors gratefully acknowledge the assistance of all those who aided in the examination of this painting over the decades, that has culminated in the work presented here. Particular thanks go to Mark Leonard (former head of Paintings Conservation at the J. Paul Getty Museum) and Henry Prask (NIST) for carrying out the NAAR analysis; John Twilley (former GCI Scientist) for early investigations; Andrea Sartorius (former JPGM Paintings intern) for creating a mock-up painting used in earlier phases of this work; Peter Reishig (former GCI intern) for compiling the NAAR data; Catherine Patterson, Lynn Lee, and David Carson (GCI Science) and Gene Karraker (JPGM Paintings Conservation) for helping with the setup and operation of the M6 Jetstream; and Giacomo Chiari (former head of GCI Science) for performing the XRD analysis. Koen Janssens and Geert van der Snickt acknowledge the Fund Inbev-Baillet Latour for financial support. Joris Dik acknowledges the help of the Netherlands Organization for Scientific Research (NWO) in the form of a VIDI grant in the Innovational Research Incentive Scheme. ; Approved Most recent IF: 1.455; 2015 IF: 1.704
Call Number UA @ admin @ c:irua:130289 Serial 5812
Permanent link to this record
 

 
Author van der Snickt, G.; Dooley, K.A.; Sanyova, J.; Dubois, H.; Delaney, J.K.; Gifford, E.M.; Legrand, S.; Laquiere, N.; Janssens, K.
Title Dual mode standoff imaging spectroscopy documents the painting process of the Lamb of God in the Ghent Altarpiece by J. and H. Van Eyck Type A1 Journal article
Year 2020 Publication Science Advances Abbreviated Journal
Volume 6 Issue 31 Pages eabb3379
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) The ongoing conservation treatment program of the Ghent Altarpiece by Hubert and Jan Van Eyck, one of the iconic paintings of the west, has revealed that the designs of the paintings were changed several times, first by the original artists, and then during later restorations. The central motif, The Lamb of God, representing Christ, plays an essential iconographic role, and its depiction is important. Because of the prevalence of lead white, it was not possible to visualize the Van Eycks' original underdrawing of the Lamb, their design changes, and the overpaint by later restorers with a single spectral imaging modality. However, by using elemental (x-ray fluorescence) and molecular (infrared reflectance) imaging spectroscopies, followed by analysis of the resulting data cubes, the necessary chemical contrast could be achieved. In this way, the two complementary modalities provided a more complete picture of the development and changes made to the Lamb.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000556543100033 Publication Date 2020-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.6 Times cited Open Access
Notes ; This research was part of the activities of the Chair on Advanced Imaging Techniques for the Arts, established by the Baillet Latour fund. In addition, it was supported by the Belgian Science Policy Office (Project MO/39/011) and the Gieskes-Strijbis fund. We are also indebted to the BOF-GOA SOLARPaint project of the University of Antwerp Research Council and to FWO (Brussels) projects G056619N and G054719N. J.K.D. and K.A.D. acknowledge support from the National Gallery of Art. ; Approved Most recent IF: 13.6; 2020 IF: NA
Call Number UA @ admin @ c:irua:171270 Serial 6494
Permanent link to this record
 

 
Author Vanmeert, F.; Hendriks, E.; van der Snickt, G.; Monico, L.; Dik, J.; Janssens, K.
Title Chemical Mapping by Macroscopic X-ray Powder Diffraction (MA-XRPD) of Van Gogh's Sunflowers : identification of areas with higher degradation risk Type A1 Journal article
Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 57 Issue 25 Pages 7418-7422
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) The discoloration rate of chrome yellow (CY), a class of synthetic inorganic pigments (PbCr1-xSxO4) frequently used by Van Gogh and his contemporaries, strongly depends on its sulfate content and on its crystalline structure (either monoclinic or orthorhombic). Macroscopic X-Ray powder diffraction imaging of selected areas on Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam) revealed the presence of two subtypes of CY: the light-fast monoclinic PbCrO4 (LF-CY) and the light-sensitive monoclinic PbCr1-xSxO4 (x approximate to 0.5; LS-CY). The latter was encountered in large parts of the painting (e.g., in the pale-yellow background and the bright-yellow petals, but also in the green stems and flower hearts), thus indicating their higher risk for past or future darkening. Overall, it is present in more than 50% of the CY regions. Preferred orientation of LS-CY allows observation of a significant ordering of the elongated crystallites along the direction of Van Gogh's brush strokes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000434949200023 Publication Date 2018-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 10 Open Access
Notes ; The authors acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, the GOA Project Solarpaint (University of Antwerp Research Council), and the Interreg Smart*Light project. Raman analyses were performed using the European MOLAB platform, which is financially supported by the Horizon 2020 Programme (IPERION CH Grant 654028). The authors thank the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994
Call Number UA @ admin @ c:irua:153185 Serial 5517
Permanent link to this record
 

 
Author Legrand, S.; Vanmeert, F.; van der Snickt, G.; Alfeld, M.; de Nolf, W.; Dik, J.; Janssens, K.
Title Examination of historical paintings by state-of-the-art hyperspectral imaging methods : from scanning infra-red spectroscopy to computed X-ray laminography Type A1 Journal article
Year 2014 Publication Heritage science Abbreviated Journal
Volume 2 Issue Pages 13-11
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) The development of advanced methods for non-destructive selective imaging of painted works of art at the macroscopic level based on radiation in the X-ray and infrared range of the electromagnetic spectrum are concisely reviewed. Such methods allow to either record depth-selective, element-selective or species-selective images of entire paintings. Camera-based full field methods (that record the image data in parallel) can be discerned next to scanning methods (that build up distributions in a sequential manner by scanning a beam of radiation over the surface of an artefact). Six methods are discussed: on the one hand, macroscopic X-ray fluorescence and X-ray diffraction imaging and X-ray laminography and on the other hand macroscopic Mid and Near Infrared hyper- and full spectral imaging and Optical Coherence Tomography. These methods can be considered to be improved versions of the well-established imaging methods employed worldwide for examination of paintings, i.e., X-ray radiography and Infrared reflectography. Possibilities and limitations of these new imaging techniques are outlined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2014-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:124629 Serial 5619
Permanent link to this record
 

 
Author Monico, L.; van der Snickt, G.; Janssens, K.; de Nolf, W.; Miliani, C.; Dik, J.; Radepont, M.; Hendriks, E.; Geldof, M.; Cotte, M.
Title Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods : 2 : original paint layer samples Type A1 Journal article
Year 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 83 Issue 4 Pages 1224-1231
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) The darkening of the original yellow areas painted with the chrome yellow pigment (PbCrO4, PbCrO4·xPbSO4, or PbCrO4·xPbO) is a phenomenon widely observed on several paintings by Vincent van Gogh, such as the famous different versions of Sunflowers. During our previous investigations on artificially aged model samples of lead chromate, we established for the first time that darkening of chrome yellow is caused by reduction of PbCrO4 to Cr2O3·2H2O (viridian green), likely accompanied by the presence of another Cr(III) compound, such as either Cr2(SO4)3·H2O or (CH3CO2)7Cr3(OH)2 [chromium(III) acetate hydroxide]. In the second part of this work, in order to demonstrate that this reduction phenomenon effectively takes place in real paintings, we study original paint samples from two paintings of V. van Gogh. As with the model samples, in view of the thin superficial alteration layers that are present, high lateral resolution spectroscopic methods that make use of synchrotron radiation (SR), such as microscopic X-ray absorption near edge (μ-XANES) and X-ray fluorescence spectrometry (μ-XRF) were employed. Additionally, μ-Raman and mid-FTIR analyses were carried out to completely characterize the samples. On both paint microsamples, the local presence of reduced Cr was demonstrated by means of μ-XANES point measurements. The presence of Cr(III) was revealed in specific areas, in some cases correlated to the presence of Ba(sulfate) and/or to that of aluminum silicate compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287176900012 Publication Date 2011-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 84 Open Access
Notes ; This research was funded by grants from ESRF (experiment EC-504) and by HASYLAB (experiments 11-20080130 EC and 11-20070157 EC) and was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) project nos. G.0103.04, G.0689.06, and G.0704.08. The staff of the Van Gogh Museum, Amsterdam, is acknowledged for their agreeable cooperation and for the authorization to publish the images of the paintings in this article. L.M. was financially supported by the Erasmus Placement in the framework of Lifelong Learning Programme (A.Y. 2009-2010). The EU Community's FP7 Research Infrastructures program under the CHARISMA Project (Grant Agreement 228330) is also acknowledged. ; Approved Most recent IF: 6.32; 2011 IF: 5.856
Call Number UA @ admin @ c:irua:88795 Serial 5571
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Vanmeert, F.; Cotte, M.; Brunetti, B.G.; van der Snickt, G.; Leeuwestein, M.; Plisson, J.S.; Menu, M.; Miliani, C.
Title Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods : part 5 : effects of nonoriginal surface coatings into the nature and distribution of chromium and sulfur species in chrome yellow paints Type A1 Journal article
Year 2014 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 86 Issue 21 Pages 10804-10811
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) The darkening of lead chromate yellow pigments, caused by a reduction of the chromate ions to Cr(III) compounds, is known to affect the appearance of several paintings by Vincent van Gogh. In previous papers of this series, we demonstrated that the darkening is activated by light and depends on the chemical composition and crystalline structure of the pigments. In this work, the results of Part 2 are extended and complemented with a new study aimed at deepening the knowledge of the nature and distribution of Cr and S species at the interface between the chrome yellow paint and the nonoriginal coating layer. For this purpose, three microsamples from two varnished paintings by Van Gogh and a waxed low relief by Gauguin (all originally uncoated) have been examined. Because nonoriginal coatings are often present in artwork by Van Gogh and contemporaries, the understanding of whether or not their application has influenced the morphological and/or physicochemical properties of the chrome yellow paint underneath is relevant in view of the conservation of these masterpieces. In all the samples studied, microscopic X-ray fluorescence (mu-XRF) and X-ray absorption near edge structure (mu-XANES) investigations showed that Cr(III)-based alteration products are present in the form of grains inside the coating (generally enriched of S species) and also homogeneously widespread at the paint surface. The distribution of Cr(III) species may be explained by the mechanical friction caused by the coating application by brush that picked up and redistributed the superficial Cr compounds, likely already present in the reduced state as result of the photodegradation process. The analysis of the XANES profiles allowed us to obtain new insights into the nature of the Cr(III) alteration products, that were identified as sulfate-, oxide-, organo-metal-, and chloride-based compounds. Building upon the knowledge acquired through the examination of original paint samples and from the investigation of aged model paints in the last Part 4 paper, in this study we aim to characterize a possible relation between the chemical composition of the coating and the chrome yellow degradation pathways by studying photochemically aged model samples covered with a dammar varnish contaminated with sulfide and sulfate salts. Cr speciation results did not show any evidence of the active role of the varnish and added S species on the reduction process of chrome yellows.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344510200043 Publication Date 2014-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 25 Open Access
Notes ; This research was supported by the Italian projects PRIN (SICH) and PON (ITACHA). The text also presents results from Interuniversity Attraction Poles Programme Belgian Science Policy (S2-ART project S4DA), GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. ESRF is acknowledged for the grants received (experiments EC-799 and EC-1051). L.M. acknowledges the CNR for the financial support received in the framework of the Short Term Mobility Programme 2013. Thanks are expressed to Ella Hendriks (Van Gogh Museum, Amsterdam) and Muriel Geldof (Cultural Heritage Agency of The Netherlands) for selecting and sharing the information on the cross-section taken from Bank of the Seine. All the staff of the Van Gogh Museum, the Kroller-Muller Museum, and the Musee d'Orsay are acknowledged for the agreeable cooperation. ; Approved Most recent IF: 6.32; 2014 IF: 5.636
Call Number UA @ admin @ c:irua:122100 Serial 5570
Permanent link to this record
 

 
Author Lachmann, T.; van der Snickt, G.; Haschke, M.; Mantouvalou, I.
Title Combined 1D, 2D and 3D micro-XRF techniques for the analysis of illuminated manuscripts Type A1 Journal article
Year 2016 Publication Journal of analytical atomic spectrometry Abbreviated Journal
Volume 31 Issue 10 Pages 1989-1997
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) The combination of several micro-XRF analysis modes is presented for the investigation of an illuminated parchment manuscript. With a commercial instrument, conventional micro-XRF spot analysis (0D) and mapping (2D) are performed, yielding detailed lateral elemental information. Depth resolution becomes accessible by mounting an additional polycapillary lens in front of an SDD detector. Quantitative confocal depth profiles (1D) are presented as well as the full separation of the front and the backside decorations with the help of fast 3D mappings of specific areas. Only through the use of these multidimensional modes can elemental information be assigned both to lateral and depth positions, making the analysis of such heterogeneous samples feasible.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385362200004 Publication Date 2016-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144755 Serial 7679
Permanent link to this record
 

 
Author Alfeld, M.; Wahabzada, M.; Bauckhage, C.; Kersting, K.; van der Snickt, G.; Noble, P.; Janssens, K.; Wellenreuther, G.; Falkenberg, G.
Title Simplex Volume Maximization (SiVM): a matrix factorization algorithm with non-negative constrains and low computing demands for the interpretation of full spectral X-ray fluorescence imaging data Type A1 Journal article
Year 2017 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 132 Issue Pages 179-184
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Technological progress allows for an ever-faster acquisition of hyperspectral data, challenging the users to keep up with interpreting the recorded data. Matrix factorization, the representation of data sets by bases (or loads) and coefficient (or score) images is long used to support the interpretation of complex data sets. We propose in this publication Simplex Volume Maximization (SiVM) for the analysis of X-ray fluorescence (XRF) imaging data sets. SiVM selects archetypical data points that represents the data set and thus provides easily understandable bases, preserves the non-negative character of XRF data sets and has low demands concerning computing resources. We apply SiVM on an XRF data set of Hans Memling's Portrait of a man from the Lespinette family from the collection of the Mauritshuis (The Hague, NL) and discuss capabilities and shortcomings of SiVM. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399845700026 Publication Date 2017-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 8 Open Access
Notes ; The German Federal Ministry of Education and Research (BMBF) is acknowledged for the financial support (Verbundprojekt 05K2012 POISSON: Fortschrittliche Faktorenanalyse ffir Poisson-verteilte Daten). ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:152647 Serial 5830
Permanent link to this record
 

 
Author Schalm, O.; van der Linden, V.; Frederickx, P.; Luyten, S.; van der Snickt, G.; Caen, J.; Schryvers, D.; Janssens, K.; Cornelis, E.; van Dyck, D.; Schreiner, M.
Title Enamels in stained glass windows: preparation, chemical composition, microstructure and causes of deterioration Type A1 Journal article
Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 64 Issue 8 Pages 812-820
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Vision lab
Abstract (down) Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, greenblue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K2O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 1617th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or greenblue) as coloring elements. Bluepurple enamel paints were obtained by mixing two different coloring agents. The coloring agent for redpurple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000269995300018 Publication Date 2009-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 28 Open Access
Notes Iuap Vi/6; Fwo; Goa Approved Most recent IF: 3.241; 2009 IF: 2.719
Call Number UA @ lucian @ c:irua:79647 Serial 1035
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Caen, J.; Vanmeert, F.; Alfeld, M.; Janssens, K.
Title Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning Type A1 Journal article
Year 2016 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 124 Issue Pages 615-622
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) Since the recent development of a mobile setup, MA-XRF scanning proved a valuable tool for the non-invasive, technical study of paintings. In this work, the applicability of MA-XRF scanning for investigating stained-glass windows inside a conservation studio is assessed by analysis of a high-profile, well-studied late-mediaeval panel. Although accurate quantification of components is not feasible with this analytical imaging technique, plotting the detected intensities of K versus Ca in a scatter plot allowed distinguishing glass fragments of different compositional types within the same panel. In particular, clusters in the Ca/K correlation plot revealed the presence of two subtypes of potash glass and three subtypes of high lime low alkali glass. MA-XRF results proved consistent with previous quantitative SEM-EDX analysis on two samples and analytical-based theories on glass production in the Low Countries formulated in literature. A bi-plot of the intensities of the more energetic Rb-K versus Sr-K emission lines yielded a similar glass type differentiation and is here presented as suitable alternative in case the Ca/K signal ratio is affected by superimposed weathering crusts. Apart from identification of the chromophores responsible for the green, blue and red glass colors, contrasting the associated elemental distribution maps obtained on the exterior and interior side of the glass permitted discriminating between colored pot metal glass and multi-layered flashed glass as well. Finally, the benefit of obtaining compositional information from the entire surface, as opposed to point analysis, was illustrated by the discovery of what appears to be a green cobalt glass a feature that was previously missed on this well-studied stained-glass window, both by connoisseurs and spectroscopic sample analysis. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000367755600074 Publication Date 2015-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 22 Open Access
Notes ; The staff of the Museums of the City of Bruges, i.e. Director Till-Holger Borchert and Deputy Curator Kristel Van Audenaeren, are acknowledged for this pleasant collaboration and the authorization for the publication of the images in this article. This research was supported by the InBev-Baillet Latour fund. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:131100 Serial 5514
Permanent link to this record
 

 
Author Radepont, M.; de Nolf, W.; Janssens, K.; van der Snickt, G.; Coquinot, Y.; Klaassen, L.; Cotte, M.
Title The use of microscopic X-ray diffraction for the study of HgS and its degradation products corderoite (\alpha-Hg3S2Cl2), kenhsuite (\gamma-Hg3S2Cl2) and calomel (Hg2Cl2) in historical paintings Type A1 Journal article
Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 26 Issue 5 Pages 959-968
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Since antiquity, the red pigment mercury sulfide (α-HgS), called cinnabar in its natural form or vermilion red when synthetic, was very often used in frescoes and paintings, even if it was known to suffer occasionally from degradation. The paint hereby acquires a black or silver-grey aspect. The chemical characterization of these alteration products is rather challenging mainly because of the micrometric size and heterogeneity of the surface layers that develop and that are responsible for the color change. Methods such as electron microscopy, synchrotron-based microscopic X-ray fluorescence, microscopic X-ray absorption near edge spectroscopy, Raman microscopy and secondary ion microscopy have been previously employed to identify the (Hg- and S-) compounds present and to study their co-localization. Next to these, also microscopic X-ray diffraction (XRD) (either by making use of laboratory X-ray sources or when used at a synchrotron facility) allows the identification of the crystal phases that are present in degraded HgS paint layers. In this paper we employ these various forms of micro-XRD to analyze degraded red paint in different paintings and compare the results with other X-ray based methods. Whereas the elemental analyses of the degradation products revealed, next to mercury and sulfur, the presence of chlorine, X-ray diffraction allowed the identification, next to α-HgS, of the Hg and S-containing compound calomel (Hg2Cl2) but also of the Hg, S and Cl-containing minerals corderoite (α-Hg3S2Cl2) and kenhsuite (γ-Hg3S2Cl2). These observations are consistent with X-ray absorption spectroscopy measurements performed at the S- and Cl-edges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000289731900011 Publication Date 2011-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 40 Open Access
Notes ; The authors gratefully acknowledge GOA programme “XANES meets EELS'' (University of Antwerp Research Council), the IUAP VI/P16 programme ”Nacho'' (BELSPO, Brussels, Belgium) and FWO (Brussels, Belgium) projects no. G.0689.06, G.0704.08 and G017909N for financial support, the ESRF for granting beamtime under proposals no. EC442 and EC720, and Gema Martinez-Criado for practical help on ID18F. The KMSKA staff is also gratefully acknowledged for their help and interest. Javier Chillida is thanked for providing us with the Pedralbes samples. The authors are also indebted to the CHARISMA project (grant agreement 228330) for financial support. ; Approved Most recent IF: 3.379; 2011 IF: 3.220
Call Number UA @ admin @ c:irua:89927 Serial 5896
Permanent link to this record