|   | 
Details
   web
Records
Author Khalil-Allafi, J.; Amin-Ahmadi, B.
Title The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys Type P3 Proceeding
Year 2009 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd
Volume 487 Issue Pages 363-366
Keywords P3 Proceeding; Condensed Matter Theory (CMT)
Abstract In the present research work the binary NiTi alloys with various compositions in the range of 50.351 at.% Ni were used. Samples have been annealed at 850 °C for 15 min and then quenched in water. In order to characterize transformation temperatures and enthalpy changes of the forward and the reverse martensitic transformation, Differential Scanning Calorimetric (DSC) experiments were performed. The enthalpy and entropy changes as a function of Ni atomic content have been thermodynamically investigated. Results show that enthalpy and entropy changes of martensitic transformation decrease when Ni atomic content increases. The variation of enthalpy and entropy of martensitic transformation with Ni content in binary NiTi alloys were explained by thermodynamic parameters and electron concentration of alloy (e/a) respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000272521900073 Publication Date 2009-07-31
Series Editor Series Title Abbreviated Series Title (down) Proceedings of the 22nd International Conference on the Physics of Semiconductors
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited 30 Open Access
Notes Approved Most recent IF: 3.133; 2009 IF: 2.135
Call Number UA @ lucian @ c:irua:122040 Serial 804
Permanent link to this record
 

 
Author Milošević, M.V.; Perali, A.
Title Emergent phenomena in multicomponent superconductivity: an introduction to the focus issue Type A1 Journal article
Year 2015 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 060201
Keywords A1 Journal article; CMT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000354110200001 Publication Date 2015-04-24
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links
Impact Factor 2.878 Times cited 41 Open Access
Notes ; ; Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number UA @ lucian @ Serial 3945
Permanent link to this record
 

 
Author Kourmoulakis, G.; Michail, A.; Paradisanos, I.; Marie, X.; Glazov, M.M.; Jorissen, B.; Covaci, L.; Stratakis, E.; Papagelis, K.; Parthenios, J.; Kioseoglou, G.
Title Biaxial strain tuning of exciton energy and polarization in monolayer WS2 Type A1 Journal Article
Year 2023 Publication Applied Physics Letters Abbreviated Journal
Volume 123 Issue 22 Pages
Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
Abstract We perform micro-photoluminescence and Raman experiments to examine the impact of biaxial tensile strain on the optical properties of WS2 monolayers. A strong shift on the order of −130 meV per % of strain is observed in the neutral exciton emission at room temperature. Under near-resonant excitation, we measure a monotonic decrease in the circular polarization degree under the applied strain. We experimentally separate the effect of the strain-induced energy detuning and evaluate the pure effect coming from the biaxial strain. The analysis shows that the suppression of the circular polarization degree under the biaxial strain is related to an interplay of energy and polarization relaxation channels as well as to variations in the exciton oscillator strength affecting the long-range exchange interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001124156400003 Publication Date 2023-11-27
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access
Notes Hellenic Foundation for Research and Innovation, HFRI-FM17-3034 ; Approved Most recent IF: 4; 2023 IF: 3.411
Call Number CMT @ cmt @c:irua:202178 Serial 8991
Permanent link to this record
 

 
Author Claes, J.; Partoens, B.; Lamoen, D.
Title Decoupled DFT-1/2 method for defect excitation energies Type A1 Journal Article
Year 2023 Publication Physical Review B Abbreviated Journal Phys. Rev. B
Volume 108 Issue 12 Pages 125306
Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
Abstract The DFT-1/2 method is a band-gap correction with GW precision at a density functional theory (DFT) computational cost. The method was also extended to correct the gap between defect levels, allowing for the calculation of optical transitions. However, this method fails when the atomic character of the occupied and unoccupied defect levels is similar as we illustrate by two examples, the tetrahedral hydrogen interstitial and the negatively charged vacancy in diamond. We solve this problem by decoupling the effect of the occupied and unoccupied defect levels and call this the decoupled DFT-1/2 method for defects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001089302800003 Publication Date 2023-09-25
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access Not_Open_Access
Notes This work was supported by the FWO (Research Foundation-Flanders), Project No. G0D1721N. This work was performed in part using HPC resources from the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government department EWI (Economie, Wetenschap & Innovatie). Approved Most recent IF: 3.7; 2023 IF: 3.836
Call Number CMT @ cmt @c:irua:201287 Serial 8976
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Comment on “Misinterpretation of the Shuttleworth equation” Type A1 Journal ArticleUA
Year 2024 Publication Scripta Materialia Abbreviated Journal Scripta Materialia
Volume 250 Issue Pages 116186
Keywords A1 Journal Article; CMT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-24
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links
Impact Factor 6 Times cited Open Access
Notes Research Foundation Flanders; Approved Most recent IF: 6; 2024 IF: 3.747
Call Number UA @ lucian @ CMT Serial 9116
Permanent link to this record
 

 
Author Zhou, R.; Neek-Amal, M.; Peeters, F.M.; Bai, B.; Sun, C.
Title Interlink between Abnormal Water Imbibition in Hydrophilic and Rapid Flow in Hydrophobic Nanochannels Type A1 Journal ArticleUA
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 18 Pages 184001
Keywords A1 Journal Article; CMT
Abstract Nanoscale extension and refinement of the Lucas-Washburn model is presented with a detailed analysis of recent experimental data and extensive molecular dynamics simulations to investigate rapid water flow and water imbibition within nanocapillaries. Through a comparative analysis of capillary rise in hydrophilic nanochannels, an unexpected reversal of the anticipated trend, with an abnormal peak, of imbibition length below the size of 3 nm was discovered in hydrophilic nanochannels, surprisingly sharing the same physical origin as the well-known peak observed in flow rate within hydrophobic nanochannels. The extended imbibition model is applicable across diverse spatiotemporal scales and validated against simulation results and existing experimental data for both hydrophilic and hydrophobic
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-30
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links
Impact Factor 8.6 Times cited Open Access
Notes We gratefully acknowledge the financial support pro- vided by the National Natural Science Foundation of China (Projects No. 52488201 and No. 52222606). Part of this project was supported by the Flemish Science Foundations (FWO-Vl) and the Iranian National Science Foundation (No. 4025061 and No. 4021261). Approved Most recent IF: 8.6; 2024 IF: 8.462
Call Number UA @ lucian @ Serial 9122
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Capillary Condensation of Water in Graphene Nanocapillaries Type A1 Journal ArticleUA
Year 2024 Publication Nano Letters Abbreviated Journal Nano Lett.
Volume 24 Issue 18 Pages 5625-5630
Keywords A1 Journal Article; CMT
Abstract Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid−liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure.

To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-08
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links
Impact Factor 10.8 Times cited Open Access
Notes This work was supported by Research Foundation-Flanders (FWO, project No. G099219N). The computational resources used in this work were provided by the HPC core facility CalcUA of the University of Antwerp, and the Flemish Supercomputer Center (VSC), funded by FWO and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712
Call Number UA @ lucian @ Serial 9123
Permanent link to this record
 

 
Author Bogaerts, R.; de Keyser, A.; van Bockstal, L.; van der Burgt, M.; van Esch, A.; Provoost, R.; Silverans, R.; Herlach, F.; Swinnen, B.; van de Stadt, A.F.W.; Koenraad, P.M.; Wolter, J.H.; Karavolas, V.C.; Peeters, F.M.; van de Graaf, W.; Borghs, G.
Title 2D semiconductors at the Leuven pulsed field facility Type A1 Journal article
Year 1997 Publication Physicalia magazine Abbreviated Journal
Volume 19 Issue Pages 229-239
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19257 Serial 7
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M.
Title 30-band k\cdot p model of electron and hole states in silicon quantum wells Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 20 Pages 205306
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We modeled the electron and hole states in Si/SiO2 quantum wells within a basis of standing waves using the 30-band k . p theory. The hard-wall confinement potential is assumed, and the influence of the peculiar band structure of bulk silicon on the quantum-well sub-bands is explored. Numerous spurious solutions in the conduction-band and valence-band energy spectra are found and are identified to be of two types: (1) spurious states which have large contributions of the bulk solutions with large wave vectors (the high-k spurious solutions) and (2) states which originate mainly from the spurious valley outside the Brillouin zone (the extravalley spurious solutions). An algorithm to remove all those nonphysical solutions from the electron and hole energy spectra is proposed. Furthermore, slow and oscillatory convergence of the hole energy levels with the number of basis functions is found and is explained by the peculiar band mixing and the confinement in the considered quantum well. We discovered that assuming the hard-wall potential leads to numerical instability of the hole states computation. Nonetheless, allowing the envelope functions to exponentially decay in a barrier of finite height is found to improve the accuracy of the computed hole states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327161500007 Publication Date 2013-11-20
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Belgian Science Policy (IAP), the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112704 Serial 18
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H.
Title Ab initio approach to superexchange interactions in alkali doped fullerides AC60 Type P1 Proceeding
Year 2004 Publication AIP conference proceedings T2 – 18th International Winterschool/Euroconference on Electronic Properties, of Novel Materials, MAR 06-JUN 13, 2004, Kirchberg, AUSTRIA Abbreviated Journal
Volume Issue Pages 393-396
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract The superexchange interactions between the fullerenes arise as a result of the electron transfer from the C-60 molecule to the alkali atom and back. We present a scheme, which is a configuration interaction approach based on the valence bond (Heitler-London) method. The effect of superexchange is described together with chemical bonding by constructing and solving a secular equation, rather than by using a perturbation treatment. We have considered 180degrees and 90degrees superexchange for the C-60 Cs-C-60 pathways. The calculations account for unusual electronic properties of polymer orthorhombic and quenched cubic phases of CsC60: two lines in nuclear magnetic resonance experiments, the development of a spin-singlet ground state and a decrease of magnetic susceptibility as T-->0.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000224699400085 Publication Date 2004-11-11
Series Editor Series Title Abbreviated Series Title (down)
Series Volume 723 Series Issue Edition
ISSN 0-7354-0204-3 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103752 Serial 27
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Ab initio study of shallow acceptors in bixbyite V2O3 Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 117 Issue 117 Pages 015703
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present the results of our study on p-type dopability of bixbyite V2O3 using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) within the density functional theory (DFT) formalism. We study vanadium and oxygen vacancies as intrinsic defects and substitutional Mg, Sc, and Y as extrinsic defects. We find that Mg substituting V acts as a shallow acceptor, and that oxygen vacancies are electrically neutral. Hence, we predict Mg-doped V2O3 to be a p-type conductor. Our results also show that vanadium vacancies are relatively shallow, with a binding energy of 0.14 eV, so that they might also lead to p-type conductivity.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000347958600067 Publication Date 2015-01-05
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 3 Open Access
Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:122728 Serial 35
Permanent link to this record
 

 
Author Szafran, B.; Bednarek, S.; Adamowski, J.; Tavernier, M.B.; Anisimovas, E.; Peeters, F.M.
Title Accuracy of the Hartree-Fock method for Wigner molecules at high magnetic fields Type A1 Journal article
Year 2004 Publication European physical journal : D : atomic, molecular and optical physics Abbreviated Journal Eur Phys J D
Volume 28 Issue 3 Pages 373-380
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Few-electron systems confined in two-dimensional parabolic quantum dots at high magnetic fields are studied by the Hartree-Fock (HF) and exact diagoiialization methods. A generalized multicenter Gaussian basis is proposed in the HF method. A comparison of the HF and exact, results allows as to discuss the relevance of the symmetry of the charge density distribution for the accuracy of the HF method. It is shown that the energy estimates obtained with the broken-symmetry HF wave functions become exact in the infinite magnetic-field limit. In this limit the charge density of the broken-symmetry solution call be identified with the classical charge distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000220378400008 Publication Date 2004-03-19
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1434-6060;1434-6079; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.288 Times cited 14 Open Access
Notes Approved Most recent IF: 1.288; 2004 IF: 1.692
Call Number UA @ lucian @ c:irua:103246 Serial 43
Permanent link to this record
 

 
Author Saniz, R.; Vercauteren, S.; Lamoen, D.; Partoens, B.; Barbiellini, B.
Title Accurate description of the van der Waals interaction of an electron-positron pair with the surface of a topological insulator Type P1 Proceeding
Year 2014 Publication Journal of physics : conference series Abbreviated Journal
Volume 505 Issue Pages 012002
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Positrons can be trapped in localized states at the surface of a material, and thus quite selectively interact with core or valence surface electrons. Hence, advanced surface positron spectroscopy techniques can present the ideal tools to study a topological insulator, where surface states play a fundamental role. We analyze the problem of a positron at a TI surface, assuming that it is a weakly physisorbed positronium (Ps) atom. To determine if the surface of interest in a material can sustain such a physisorption, an accurate description of the underlying van der Waals (vdW) interaction is essential. We have developed a first-principles parameterfree method, based on the density functional theory, to extract key parameters determining the vdW interaction potential between a Ps atom and the surface of a given material. The method has been successfully applied to quartz and preliminary results on Bi2Te2Se indicate the existence of a positron surface state. We discuss the robustness of our predictions versus the most relevant approximations involved in our approach.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000338216500002 Publication Date 2014-04-28
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; We thank A. Weiss for very useful conversations. We acknowledge financial support from FWO-Vlaanderen (projectG.0150.13). This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), adivision of the Flemish Supercomputer Center (VSC), funded by the Hercules foundation and the Flemish Government (EWI Department). B. B. is supported by DOE grants Nos. DE-FG02-07ER46352 and DE-AC02-05CH11231 for theory support at ALS, Berkeley, and a NERSC computer time allocation. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:118264 Serial 46
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B.
Title Accurate pseudopotential description of the GW bandstructure of ZnO Type A1 Journal article
Year 2011 Publication Computer physics communications Abbreviated Journal Comput Phys Commun
Volume 182 Issue 9 Pages 2029-2031
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present the GW band structure of ZnO in its wurtzite (WZ), zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. We have used a Zn20+ pseudopotential which is essential for the adequate treatment of the exchange interaction in the self-energy. The accuracy of the pseudopotential used is also discussed. The effect of the pd hybridization on the GW corrections to the band gap is correlated by comparing the ZB and RS phase.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000292675100062 Publication Date 2011-02-17
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 0010-4655; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.936 Times cited 18 Open Access
Notes ; ; Approved Most recent IF: 3.936; 2011 IF: 3.268
Call Number UA @ lucian @ c:irua:90761 Serial 51
Permanent link to this record
 

 
Author Farias, G.A.; da Costa, W.B.; Peeters, F.M.
Title Acoustical polarons and bipolarons in two dimensions Type A1 Journal article
Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 54 Issue Pages 12835-12840
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996VT68200039 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 30 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15790 Serial 54
Permanent link to this record
 

 
Author García, J.H.; Uchoa, B.; Covaci, L.; Rappoport, T.G.
Title Adatoms and Anderson localization in graphene Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 8 Pages 085425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We address the nature of the disordered state that results from the adsorption of adatoms in graphene. For adatoms that sit at the center of the honeycomb plaquette, as in the case of most transition metals, we show that the ones that form a zero-energy resonant state lead to Anderson localization in the vicinity of the Dirac point. Among those, we show that there is a symmetry class of adatoms where Anderson localization is suppressed, leading to an exotic metallic state with large and rare charge droplets, that localizes only at the Dirac point. We identify the experimental conditions for the observation of the Anderson transition for adatoms in graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341238600004 Publication Date 2014-08-22
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; We acknowledge F. Guinea, K. Mullen, A. H. Castro Neto, and E. Mucciolo for discussions. B. U. acknowledges the University of Oklahoma for financial support and NSF Grant No. DMR-1352604 for partial support. T.G.R. and J.H.G acknowledge Brazilian agencies CNPq, FAPERJ, and “INCT de nanoestruturas de carbono” for financial support. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119258 Serial 57
Permanent link to this record
 

 
Author Verhulst, S.L.; de Backer, J.; Van Gaal, L.; de Backer, W.; Desager, K.
Title Adenotonsillectomy as first-line treatment for sleep-disordered breathing in obese children Type L1 Letter to the editor
Year 2008 Publication American journal of respiratory and critical care medicine Abbreviated Journal Am J Resp Crit Care
Volume 177 Issue 12 Pages 1399
Keywords L1 Letter to the editor; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1073-449x; 1535-4970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.204 Times cited Open Access
Notes Approved Most recent IF: 13.204; 2008 IF: 9.792
Call Number UA @ lucian @ c:irua:68864 Serial 59
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M.
Title Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene : stability and electronic and phonon properties Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 8 Pages 085444-85448
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ab initio calculations within the density-functional theory formalism are performed to investigate the chemical functionalization of a graphene-like monolayer of siliconsilicenewith B, N, Al, or P atoms. The structural, electronic, magnetic, and vibrational properties are reported. The most preferable adsorption sites are found to be valley, bridge, valley and hill sites for B, N, Al, and P adatoms, respectively. All the relaxed systems with adsorbed/substituted atoms exhibit metallic behavior with strongly bonded B, N, Al, and P atoms accompanied by an appreciable electron transfer from silicene to the B, N, and P adatom/substituent. The Al atoms exhibit opposite charge transfer, with n-type doping of silicene and weaker bonding. The adatoms/substituents induce characteristic branches in the phonon spectrum of silicene, which can be probed by Raman measurements. Using molecular dynamics, we found that the systems under study are stable up to at least T=500 K. Our results demonstrate that silicene has a very reactive and functionalizable surface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315482900007 Publication Date 2013-02-27
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 169 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107071 Serial 60
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
Title Adsorption and desorption in confined geometries : a discrete hopping model Type A1 Journal article
Year 2014 Publication The European physical journal. Special topics Abbreviated Journal Eur Phys J-Spec Top
Volume 223 Issue 14 Pages 3243-3256
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the adsorption and desorption kinetics of interacting particles moving on a one-dimensional lattice. Confinement is introduced by limiting the number of particles on a lattice site. Adsorption and desorption are found to proceed at different rates, and are strongly influenced by the concentration-dependent transport diffusion. Analytical solutions for the transport and self-diffusion are given for systems of length 1 and 2 and for a zero-range process. In the last situation the self- and transport diffusion can be calculated analytically for any length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000346416400015 Publication Date 2014-12-15
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1951-6355;1951-6401; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.862 Times cited 4 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government – department EWI. ; Approved Most recent IF: 1.862; 2014 IF: 1.399
Call Number UA @ lucian @ c:irua:122779 Serial 61
Permanent link to this record
 

 
Author Sahin, H.; Peeters, F.M.
Title Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 8 Pages 085423-85429
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale. DOI: 10.1103/PhysRevB.87.085423
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315146500008 Publication Date 2013-02-19
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 281 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107663 Serial 62
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Adsorption of small molecules on graphene Type A1 Journal article
Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J
Volume 40 Issue 4/5 Pages 860-862
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the adsorption process of small molecules on graphene through first-principles calculations and show the presence of two main charge transfer mechanisms. Which mechanism is the dominant one depends on the magnetic properties of the adsorbing molecules. We explain these mechanisms through the density of states of the system and the molecular orbitals of the adsorbates, and demonstrate the possible difficulties in calculating the charge transfer from first principles between a graphene sheet and a molecule. Our results are in good agreement with experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000265870200058 Publication Date 2008-12-26
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.163 Times cited 116 Open Access
Notes Approved Most recent IF: 1.163; 2009 IF: 0.778
Call Number UA @ lucian @ c:irua:77030 Serial 65
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue Pages 125416,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by the recent realization of graphene sensors to detect individual gas molecules, we investigate the adsorption of H2O, NH3, CO, NO2, and NO on a graphene substrate using first-principles calculations. The optimal adsorption position and orientation of these molecules on the graphene surface is determined and the adsorption energies are calculated. Molecular doping, i.e., charge transfer between the molecules and the graphene surface, is discussed in light of the density of states and the molecular orbitals of the adsorbates. The efficiency of doping of the different molecules is determined and the influence of their magnetic moment is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000254543000133 Publication Date 2008-03-18
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1392 Open Access
Notes This work was supported by the Flemish Science Foundation FWO-Vl, by the NOI-BOF of the University of Antwerp, and by the Belgian Science Policy IAP. Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:69634 Serial 67
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M.
Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
Year 2014 Publication APL materials Abbreviated Journal Apl Mater
Volume 2 Issue 9 Pages 092801
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342568000020 Publication Date 2014-08-28
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA
Call Number UA @ lucian @ c:irua:119950 Serial 82
Permanent link to this record
 

 
Author Park, K.; De Beule, C.; Partoens, B.
Title The ageing effect in topological insulators : evolution of the surface electronic structure of Bi2Se3 upon K adsorption Type A1 Journal article
Year 2013 Publication New journal of physics Abbreviated Journal New J Phys
Volume 15 Issue Pages 113031-16
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Topological insulators (TIs) have attracted a lot of interest in recent years due to their topologically protected surface states, as well as exotic proximity-induced phenomena and device applications for TI heterostructures. Since the first experimental studies of TIs, angle-resolved photoemission spectra (ARPES) showed that the electronic structure of the topological surface states significantly changes as a function of time after cleavage. The origin and underlying mechanism of this ageing effect are still under debate, despite its importance. Here we investigate the evolution of the surface Dirac cone for Bi2Se3 films upon asymmetric potassium (K) adsorption, using density-functional theory and a tight-binding model. We find that the K adatoms induce short-ranged downward band bending within 2-3 nm from the surface, due to charge transfer from the adatoms to the TI. These findings are in contrast to earlier proposals in the literature, that propose a long-ranged downward band bending up to 15 nm from the surface. Furthermore, as the charge transfer increases, we find that a new Dirac cone, localized slightly deeper into the TI than the original one, appears at the K-adsorbed surface, originating from strong Rashba-split conduction-band states. Our results suggest possible reinterpretations of experiments because the new Dirac cone might have been observed in ARPES measurements instead of the original one that appears immediately after cleavage. Our findings are consistent with ARPES data and provide insight into building TI-heterostructure devices by varying the band-bending potential or film thickness.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000326876100006 Publication Date 2013-11-13
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 45 Open Access
Notes ; KP was supported by National Science Foundation grant numbers DMR-0804665 and DMR-1206354 and SDSC Trestles under DMR060009N. CDB was supported by the Research Foundation Flanders (FWO). ; Approved Most recent IF: 3.786; 2013 IF: 3.671
Call Number UA @ lucian @ c:irua:112707 Serial 84
Permanent link to this record
 

 
Author Li, B.
Title Aharonov-Bohm effect in semiconductor quantum rings Type Doctoral thesis
Year 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:99488 Serial 85
Permanent link to this record
 

 
Author Vasilopoulos, P.; Kálmán, O.; Peeters, F.M.; Benedict, M.G.
Title Aharonov-Bohm oscillations in a mesoscopic ring with asymmetric arm-dependent injection Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 75 Issue 3 Pages 035304,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000243895400086 Publication Date 2007-01-05
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:63751 Serial 86
Permanent link to this record
 

 
Author Szumniak, P.; Bednarek, S.; Pawlowski, J.; Partoens, B.
Title All-electrical control of quantum gates for single heavy-hole spin qubits Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 19 Pages 195307-195312
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this paper several nanodevices which realize basic single heavy-hole qubit operations are proposed and supported by time-dependent self-consistent Poisson-Schrodinger calculations using a four band heavy-hole-light-hole model. In particular we propose a set of nanodevices which can act as Pauli X, Y, Z quantum gates and as a gate that acts similar to a Hadamard gate (i.e., it creates a balanced superposition of basis states but with an additional phase factor) on the heavy-hole spin qubit. We also present the design and simulation of a gated semiconductor nanodevice which can realize an arbitrary sequence of all these proposed single quantum logic gates. The proposed devices exploit the self-focusing effect of the hole wave function which allows for guiding the hole along a given path in the form of a stable solitonlike wave packet. Thanks to the presence of the Dresselhaus spin-orbit coupling, the motion of the hole along a certain direction is equivalent to the application of an effective magnetic field which induces in turn a coherent rotation of the heavy-hole spin. The hole motion and consequently the quantum logic operation is initialized only by weak static voltages applied to the electrodes which cover the nanodevice. The proposed gates allow for an all electric and ultrafast (tens of picoseconds) heavy-hole spin manipulation and give the possibility to implement a scalable architecture of heavy-hole spin qubits for quantum computation applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319252200003 Publication Date 2013-05-21
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the Polish National Science Center (Grant No. DEC-2011/03/N/ST3/02963), as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme, co-financed by the European Regional Development Fund. This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109002 Serial 88
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B.
Title An envelope function formalism for lattice-matched heterostructures Type A1 Journal article
Year 2015 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 470-471 Issue 470-471 Pages 69-75
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The envelope function method traditionally employs a single basis set which, in practice, relates to a single material because the k.p matrix elements are generally only known in a particular basis. In this work, we defined a basis function transformation to alleviate this restriction. The transformation is completely described by the known inter-band momentum matrix elements. The resulting envelope function equation can solve the electronic structure in lattice matched heterostructures without resorting to boundary conditions at the interface between materials, while all unit-cell averaged observables can be calculated as with the standard envelope function formalism. In the case of two coupled bands, this heterostructure formalism is equivalent to the standard formalism while taking position dependent matrix elements. (C) 2015 Elsevier B.V. All rights reserved
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000355149600011 Publication Date 2015-04-26
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 1.386; 2015 IF: 1.319
Call Number c:irua:126397 Serial 95
Permanent link to this record
 

 
Author Matulis, A.; Peeters, F.M.
Title Analogy between one-dimensional chain models and graphene Type A1 Journal article
Year 2009 Publication American journal of physics Abbreviated Journal Am J Phys
Volume 77 Issue 7 Pages 595-601
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electron and hole spectrum in single and bilayer graphene is derived from known one-dimensional models, and the relation between the spectrum and symmetry of the lattice is shown.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000266976000003 Publication Date 2009-06-11
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 0002-9505; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.069 Times cited 11 Open Access
Notes Approved Most recent IF: 1.069; 2009 IF: 0.779
Call Number UA @ lucian @ c:irua:77381 Serial 97
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Peeters, F.M.
Title Analysis of pattern formation in systems with competing range interactions Type A1 Journal article
Year 2012 Publication New journal of physics Abbreviated Journal New J Phys
Volume 14 Issue Pages 063032
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We analyzed pattern formation and identified various morphologies in a system of particles interacting through a non-monotonic potential with a competing range interaction characterized by a repulsive core (r < r(c)) and an attractive tail (r > r(c)), using molecular-dynamics simulations. Depending on parameters, the interaction potential models the inter-particle interaction in various physical systems ranging from atoms, molecules and colloids to vortices in low kappa type-II superconductors and in recently discovered 'type-1.5' superconductors. We constructed a 'morphology diagram' in the plane 'critical radius r(c)-density n' and proposed a new approach to characterizing the different types of patterns. Namely, we elaborated a set of quantitative criteria in order to identify the different pattern types, using the radial distribution function (RDF), the local density function and the occupation factor.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000306946600003 Publication Date 2012-06-25
Series Editor Series Title Abbreviated Series Title (down)
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 45 Open Access
Notes ; We acknowledge useful discussions with Ernst Helmut Brandt, Charles Reichhardt and Cynthia Olson Reichhardt. This work was supported by the 'Odysseus' Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.786; 2012 IF: 4.063
Call Number UA @ lucian @ c:irua:101140 Serial 102
Permanent link to this record