|   | 
Details
   web
Records
Author Yu, CP.; Vega Ibañez, F.; Béché, A.; Verbeeck, J.
Title Quantum wavefront shaping with a 48-element programmable phase plate for electrons Type A1 Journal Article
Year 2023 Publication SciPost Physics Abbreviated Journal (up) SciPost Phys.
Volume 15 Issue Pages 223
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)
Abstract We present a 48-element programmable phase plate for coherent electron waves produced by a combination of photolithography and focused ion beam. This brings the highly successful concept of wavefront shaping from light optics into the realm of electron optics and provides an important new degree of freedom to prepare electron quantum states. The phase plate chip is mounted on an aperture rod placed in the C2 plane of a transmission electron microscope operating in the 100-300 kV range. The phase plate's behavior is characterized by a Gerchberg-Saxton algorithm, showing a phase sensitivity of 0.075 rad/mV at 300 kV, with a phase resolution of approximately 3x10e−3π. In addition, we provide a brief overview of possible use cases and support it with both simulated and experimental results.
Address
Corporate Author Thesis
Publisher SciPost Place of Publication Editor
Language English Wos 001116838500002 Publication Date 2023-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited 1 Open Access
Notes This project is the result of a long-term effort involving many differ- ent sources of funding: JV acknowledges funding from an ERC proof of concept project DLV- 789598 ADAPTEM, as well as a University IOF proof of concept project towards launching the AdaptEM spin-off and the eBEAM project, supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07-2020: emerging paradigms and com- munities. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3 and via The IMPRESS project from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. FV, JV, and AB acknowledge funding from G042820N ‘Explor- ing adaptive optics in transmission electron microscopy.’ CPY acknowledges funding from a TOP-BOF project from the University of Antwerp. Approved Most recent IF: 5.5; 2023 IF: NA
Call Number EMAT @ emat @c:irua:202037 Serial 8984
Permanent link to this record
 

 
Author Prabhakara, V.; Jannis, D.; Béché, A.; Bender, H.; Verbeeck, J.
Title Strain measurement in semiconductor FinFET devices using a novel moiré demodulation technique Type A1 Journal article
Year 2019 Publication Semiconductor science and technology Abbreviated Journal (up) Semicond Sci Tech
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Moiré fringes are used throughout a wide variety of applications in physics and

engineering to bring out small variations in an underlying lattice by comparing with another reference lattice. This method was recently demonstrated in Scanning Transmission Electron Microscopy imaging to provide local strain measurement in crystals by comparing the crystal lattice with the scanning raster that then serves as the reference. The images obtained in this way contain a beating fringe pattern with a local period that represents the deviation of the lattice from the reference. In order to obtain the actual strain value, a region containing a full period of the fringe is required, which results in a compromise between strain sensitivity and spatial resolution. In this paper we propose an advanced setup making use of an optimised scanning pattern and a novel phase stepping demodulation scheme. We demonstrate the novel method on a series of 16 nm Si-Ge semiconductor FinFET devices in which strain plays a crucial role in modulating the charge carrier mobility. The obtained results are compared with both Nano-beam diffraction and the recently proposed Bessel beam diffraction technique. The setup provides a much improved spatial resolution over conventional moiré imaging in STEM while at the same time being fast and requiring no specialised diffraction camera as opposed to the diffraction techniques we compare to.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000537721200002 Publication Date 2019-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.305 Times cited 8 Open Access
Notes The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. We would also like to thank Dr. Thomas Nuytten and Prof. Dr. Wilfried Vandervorst from IMEC, Leuven for their continuous support and collaboration with the project. Approved Most recent IF: 2.305
Call Number EMAT @ emat @c:irua:165794 Serial 5445
Permanent link to this record
 

 
Author Li, Y.; Tan, H.; Yang, X.-Y.; Goris, B.; Verbeeck, J.; Bals, S.; Colson, P.; Cloots, R.; Van Tendeloo, G.; Su, B.-L.
Title Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties Type A1 Journal article
Year 2011 Publication Small Abbreviated Journal (up) Small
Volume 7 Issue 4 Pages 475-483
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Very uniform and well shaped Mn3O4 nano-octahedra are synthesized using a simple hydrothermal method under the help of polyethylene glycol (PEG200) as a reductant and shape-directing agent. The nano-octahedra formation mechanism is monitored. The shape and crystal orientation of the nanoparticles is reconstructed by scanning electron microscopy and electron tomography, which reveals that the nano-octahedra only selectively expose {101} facets at the external surfaces. The magnetic testing demonstrates that the Mn3O4 nano-octahedra exhibit anomalous magnetic properties: the Mn3O4 nano-octahedra around 150 nm show a similar Curie temperature and blocking temperature to Mn3O4 nanoparticles with 10 nm size because of the vertical axis of [001] plane and the exposed {101} facets. With these Mn3O4 nano-octahedra as a catalyst, the photodecomposition of rhodamine B is evaluated and it is found that the photodecomposition activity of Mn3O4 nano-octahedra is much superior to that of commercial Mn3O4 powders. The anomalous magnetic properties and high superior photodecomposition activity of well shaped Mn3O4 nano-octahedra should be related to the special shape of the nanoparticles and the abundantly exposed {101} facets at the external surfaces. Therefore, the shape preference can largely broaden the application of the Mn3O4 nano-octahedra.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000288080400008 Publication Date 2011-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 131 Open Access
Notes This work was realized in the frame of an Interuniversity Attraction Poles Program (Inanomat-P6/17)-Belgian State-Belgian Science Policy and the project “Redugaz”, financially supported by the European community and the Wallon government in the frame of Interreg IV (France-Wallonie). B. L. S. acknowledges the Chinese Central Government for an “Expert of the State” position in the program of “Thousand talents” and the Chinese Ministry of Education for a Changjiang Scholar position at the Wuhan University of Technology. H. T. acknowledges the financial support from FWO-Vlaanderen (Project nr. G.0147.06). J.V. thanks the financial support from the European Union under Framework 6 program for Integrated Infrastructure Initiative, Reference 026019 ESTEEM. Approved Most recent IF: 8.643; 2011 IF: 8.349
Call Number UA @ lucian @ c:irua:87908 Serial 3914
Permanent link to this record
 

 
Author Guda, A.A.; Smolentsev, N.; Verbeeck, J.; Kaidashev, E.M.; Zubavichus, Y.; Kravtsova, A.N.; Polozhentsev, O.E.; Soldatov, A.V.
Title X-ray and electron spectroscopy investigation of the coreshell nanowires of ZnO:Mn Type A1 Journal article
Year 2011 Publication Solid state communications Abbreviated Journal (up) Solid State Commun
Volume 151 Issue 19 Pages 1314-1317
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract ZnO/ZnO:Mn coreshell nanowires were studied by means of X-ray absorption spectroscopy of the Mn K- and L2,3-edges and electron energy loss spectroscopy of the O K-edge. The combination of conventional X-ray and nanofocused electron spectroscopies together with advanced theoretical analysis turned out to be fruitful for the clear identification of the Mn phase in the volume of the coreshell structures. Theoretical simulations of spectra, performed using the full-potential linear augmented plane wave approach, confirm that the shell of the nanowires, grown by the pulsed laser deposition method, is a real dilute magnetic semiconductor with Mn2+ atoms at the Zn sites, while the core is pure ZnO.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000295492200003 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 12 Open Access
Notes We acknowledge the Helmholtz-Zentrum Berlin – Electron storage ring BESSY-II for provision of synchrotron radiation at the Russian-German beamline and financial support. This research was supported by the Russian Ministry to education and science (RPN 2.1.1. 5932 grant and RPN 2.1.1.6758 grant). N.S. and A.G. would like to thank the Russian Ministry of Education for providing the fellowships of President of Russian Federation to study abroad. We would like to thank the UGINFO computer center of Southern federal university for providing the computer time. Approved Most recent IF: 1.554; 2011 IF: 1.649
Call Number UA @ lucian @ c:irua:92831 Serial 3925
Permanent link to this record
 

 
Author Verbeeck, J.; van Dyck, D.; Van Tendeloo, G.
Title Energy-filtered transmission electron microscopy: an overview Type A1 Journal article
Year 2004 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal (up) Spectrochim Acta B
Volume 59 Issue 10/11 Pages 1529-1534
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract This paper aims to give an overview of the technique of energy-filtered transmission electron microscopy (EFTEM). It explains the basic principles of the technique and points to the relevant literature for more detailed issues. Experimental examples are given to show the power of EFTEM to study the chemical composition of nanoscale samples in materials science. Advanced EFTEM applications like imaging spectroscopy and EFTEM tomography are briefly discussed. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000224848000006 Publication Date 2004-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 37 Open Access
Notes Approved Most recent IF: 3.241; 2004 IF: 3.086
Call Number UA @ lucian @ c:irua:54869UA @ admin @ c:irua:54869 Serial 1038
Permanent link to this record
 

 
Author Molina, L.; Tan, H.; Biermans, E.; Batenburg, K.J.; Verbeeck, J.; Bals, S.; Van Tendeloo, G.
Title Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal (up) Supercond Sci Tech
Volume 24 Issue 6 Pages 065019-065019,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films are investigated by a combination of scanning transmission electron microscopy (STEM), electron energy-loss spectroscopy (EELS) and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni5 at.%W substrates with a {100}lang001rang biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer-sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly faceted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS, yielding a 1.8 ± 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7 − δ coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000290472900021 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 31 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88639UA @ admin @ c:irua:88639 Serial 221
Permanent link to this record
 

 
Author Molina, L.; Egoavil, R.; Turner, S.; Thersleff, T.; Verbeeck, J.; Holzapfel, B.; Eibl, O.; Van Tendeloo, G.
Title Interlayer structure in YBCO-coated conductors prepared by chemical solution deposition Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal (up) Supercond Sci Tech
Volume 26 Issue 7 Pages 075016-75018
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The functionality of YBa2Cu3O7−δ (YBCO)-coated conductor technology depends on the reliability and microstructural properties of a given tape or wire architecture. Particularly, the interface to the metal tape is of interest since it determines the adhesion, mechanical stability of the film and thermal contact of the film to the substrate. A trifluoroacetate (TFA)metal organic deposition (MOD) prepared YBCO film deposited on a chemical solution-derived buffer layer architecture based on CeO2/La2Zr2O7 and grown on a flexible Ni5 at.%W substrate with a {100}⟨001⟩ biaxial texture was investigated. The YBCO film had a thickness was 440 nm and a jc of 1.02 MA cm−2 was determined at 77 K and zero external field. We present a sub-nanoscale analysis of a fully processed solution-derived YBCO-coated conductor by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS). For the first time, structural and chemical analysis of the valence has been carried out on the sub-nm scale. Intermixing of Ni, La, Ce, O and Ba takes place at these interfaces and gives rise to nanometer-sized interlayers which are a by-product of the sequential annealing process. Two distinct interfacial regions were analyzed in detail: (i) the YBCO/CeO2/La2Zr2O7 region (10 nm interlayer) and (ii) the La2Zr2O7/Ni5 at.%W substrate interface region (20 nm NiO). This is of particular significance for the functionality of these YBCO-coated conductor architectures grown by chemical solution deposition.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000319973800024 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 11 Open Access
Notes vortex; Countatoms; Fwo; Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:108704UA @ admin @ c:irua:108704 Serial 1698
Permanent link to this record
 

 
Author Lamas, J.S.; Leroy, W.P.; Lu, Y.-G.; Verbeeck, J.; Van Tendeloo, G.; Depla, D.
Title Using the macroscopic scale to predict the nano-scale behavior of YSZ thin films Type A1 Journal article
Year 2014 Publication Surface and coatings technology Abbreviated Journal (up) Surf Coat Tech
Volume 238 Issue Pages 45-50
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this work, Yttria-stabilized zirconia (YSZ) thin films were deposited using dual reactive magnetron sputtering. By varying the deposition conditions, the film morphology and texture of the thin films are tuned and biaxial alignment is obtained. Studying the crystallographic and microstructural properties of the YSZ thin films, a tilted columnar growth was identified. This tilt is shown to be dependent on the compositional gradient of the sample. The variation of composition within a single YSZ column measured via STEM-EDX is demonstrated to be equal to the macroscopic variation on a full YSZ sample when deposited under the same deposition parameters. A simple stress model was developed to predict the tilt of the growing columns. The results indicate that this model not only determines the column bending of the growing film but also confirms that a macroscopic approach is sufficient to determine the compositional gradient in a single column of the YSZ thin films. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000331028200005 Publication Date 2013-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited 8 Open Access
Notes 246791 Countatoms; 278510 Vortex;Nmp3-La-2010-246102 Ifox; 312483 Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.589; 2014 IF: 1.998
Call Number UA @ lucian @ c:irua:115765 Serial 3827
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Vanmeert, F.; Legrand, S.; Nuyts, G.; Alfeld, M.; Monico, L.; Anaf, W.; de Nolf, W.; Vermeulen, M.; Verbeeck, J.; De Wael, K.
Title Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-Ray methods Type A1 Journal article
Year 2016 Publication Topics in Current Chemistry Abbreviated Journal (up) Topics Curr Chem
Volume 374 Issue 374 Pages 81
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.
Address
Corporate Author Thesis
Publisher Springer international publishing ag Place of Publication Cham Editor
Language Wos 000391178900006 Publication Date 2016-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2365-0869;2364-8961; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.033 Times cited 50 Open Access
Notes ; ; Approved Most recent IF: 4.033
Call Number UA @ lucian @ c:irua:139930UA @ admin @ c:irua:139930 Serial 4443
Permanent link to this record
 

 
Author Bertoni, G.; Verbeeck, J.
Title Accuracy and precision in model based EELS quantification Type A1 Journal article
Year 2008 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 108 Issue 8 Pages 782-790
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present results on model based quantification of electron energy loss spectra (EELS), focusing on the factors that influence accuracy and precision in determining chemical concentrations. Several sources of systematical errors are investigated. The spectrometer entrance aperture determines the collection angle, and the effects of its position with respect to the transmitted beam are investigated, taking into account the diffraction by the crystal structure. The effect of the orientation of the sample is tested experimentally and theoretically on SrTiO3, and finally, a simulated experiment on c-BN at different thicknesses confirms the superior results of the model based method with respect to the conventional method. A test on a set of experimental reference compounds is presented, showing that remarkably good accuracy can be obtained. Recommendations are given to achieve high accuracy and precision in practice. (C) 2008 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000258241900010 Publication Date 2008-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 44 Open Access
Notes Approved Most recent IF: 2.843; 2008 IF: 2.629
Call Number UA @ lucian @ c:irua:70550UA @ admin @ c:irua:70550 Serial 42
Permanent link to this record
 

 
Author van den Broek, W.; Verbeeck, J.; de Backer, S.; Scheunders, P.; Schryvers, D.
Title Acquisition of the EELS data cube by tomographic reconstruction Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 106 Issue 4/5 Pages 269-276
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Energy filtered TEM, EFTEM, provides three-dimensional data, two spatial and one spectral dimension. We propose to acquire these data by measuring a series of images with a defocused energy filter. It will be shown that each image is a projection of the data on the detector and that reconstruction of the data out of a sufficient number of such projections using a tomographic reconstruction algorithm is possible. This technique uses only a fraction of the electron dose an energy filtered series (EFS) needs for the same spectral and spatial resolution and the same mean signal-to-noise ratio. (c) 2005 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000236042300003 Publication Date 2005-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:56910UA @ admin @ c:irua:56910 Serial 55
Permanent link to this record
 

 
Author Egoavil, R.; Gauquelin, N.; Martinez, G.T.; Van Aert, S.; Van Tendeloo, G.; Verbeeck, J.
Title Atomic resolution mapping of phonon excitations in STEM-EELS experiments Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 147 Issue Pages 1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Atomically resolved electron energy-loss spectroscopy experiments are commonplace in modern aberration-corrected transmission electron microscopes. Energy resolution has also been increasing steadily with the continuous improvement of electron monochromators. Electronic excitations however are known to be delocalized due to the long range interaction of the charged accelerated electrons with the electrons in a sample. This has made several scientists question the value of combined high spatial and energy resolution for mapping interband transitions and possibly phonon excitation in crystals. In this paper we demonstrate experimentally that atomic resolution information is indeed available at very low energy losses around 100 meV expressed as a modulation of the broadening of the zero loss peak. Careful data analysis allows us to get a glimpse of what are likely phonon excitations with both an energy loss and gain part. These experiments confirm recent theoretical predictions on the strong localization of phonon excitations as opposed to electronic excitations and show that a combination of atomic resolution and recent developments in increased energy resolution will offer great benefit for mapping phonon modes in real space.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000343157400001 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 22 Open Access
Notes 246102 IFOX; 278510 VORTEX; 246791 COUNTATOMS; Hercules; 312483 ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:118332UA @ admin @ c:irua:118332 Serial 177
Permanent link to this record
 

 
Author Niermann, T.; Verbeeck, J.; Lehmann, M.
Title Creating arrays of electron vortices Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 136 Issue Pages 165-170
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate the production of an ordered array of electron vortices making use of an electron optical setup consisting of two electrostatic biprisms. The biprism filaments are oriented nearly orthogonal with respect to each other in a transmission electron microscope. Matching the position of the filaments, we can choose to form different topological features in the electron wave. We outline the working principle of the setup and demonstrate fist experimental results. This setup partially bridges the gap between angular momentum carried by electron spin, which is intrinsic and therefore present in any position of the wave, and angular momentum carried by the vortex character of the wave, which can be extrinsic depending on the axis around which it is measured. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000327884700021 Publication Date 2013-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 9 Open Access
Notes FP7; Countatoms; Vortex ECASJO_; Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:112837UA @ admin @ c:irua:112837 Serial 538
Permanent link to this record
 

 
Author Verbeeck, J.; Bertoni, G.
Title Deconvolution of core electron energy loss spectra Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 109 Issue 11 Pages 1343-1352
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Different deconvolution methods for removing multiple scattering and instrumental broadening from core loss electron energy loss spectra are compared with special attention to the artefacts they introduce. The Gaussian modifier method, Wiener filter, maximum entropy, and model based methods are described. Their performance is compared on virtual spectra where the true single scattering distribution is known. A test on experimental spectra confirms the good performance of model based deconvolution in comparison to maximum entropy methods and shows the advantage of knowing the estimated error bars from a single spectrum acquisition.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000270765800005 Publication Date 2009-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 13 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:79073UA @ admin @ c:irua:79073 Serial 610
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Filonenko, V.P.; Gonnissen, J.; Tan, H.; Verbeeck, J.; Gemmi, M.; Antipov, E.V.; Rosner, H.
Title Direct space structure solution from precession electron diffraction data: resolving heavy and light scatterers in Pb13Mn9O25 Type A1 Journal article
Year 2010 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 110 Issue 7 Pages 881-890
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of a novel compound Pb13Mn9O25 has been determined through a direct space structure solution with a Monte-Carlo-based global optimization using precession electron diffraction data (a=14.177(3) Å, c=3.9320(7) Å, SG P4/m, RF=0.239) and compositional information obtained from energy dispersive X-ray analysis and electron energy loss spectroscopy. This allowed to obtain a reliable structural model even despite the simultaneous presence of both heavy (Pb) and light (O) scattering elements and to validate the accuracy of the electron diffraction-based structure refinement. This provides an important benchmark for further studies of complex structural problems with electron diffraction techniques. Pb13Mn9O25 has an anion- and cation-deficient perovskite-based structure with the A-positions filled by the Pb atoms and 9/13 of the B positions filled by the Mn atoms in an ordered manner. MnO6 octahedra and MnO5 tetragonal pyramids form a network by sharing common corners. Tunnels are formed in the network due to an ordered arrangement of vacancies at the B-sublattice. These tunnels provide sufficient space for localization of the lone 6s2 electron pairs of the Pb2+ cations, suggested as the driving force for the structural difference between Pb13Mn9O25 and the manganites of alkali-earth elements with similar compositions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000280050900023 Publication Date 2010-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 24 Open Access
Notes Fwo; Bof; Esteem Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:84085UA @ admin @ c:irua:84085 Serial 721
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Van Aert, S.; Bals, S.; Verbeeck, J.
Title An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 106 Issue 10 Pages 933-940
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab
Abstract We propose an improved image simulation procedure for atomic-resolution annular dark-field scanning transmission electron microscopy (STEM) based on the multislice formulation, which takes thermal diffuse scattering fully into account. The improvement with regard to the classical frozen phonon approach is realized by separating the lattice configuration statistics from the dynamical scattering so as to avoid repetitive calculations. As an example, the influence of phonon scattering on the image contrast is calculated and investigated. STEM image simulation of crystals can be applied with reasonable computing times to problems involving a large number of atoms and thick or large supercells.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000240397200006 Publication Date 2006-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 18 Open Access
Notes Fwo; Fwo-V Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:87604UA @ admin @ c:irua:87604 Serial 876
Permanent link to this record
 

 
Author Radtke, G.; Botton, G.A.; Verbeeck, J.
Title Electron inelastic, scattering and anisotropy: the two-dimensional point of view Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 106 Issue 11-12 Pages 1082-1090
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The measurement of the electronic structure of anisotropic materials using energy loss near edge structure (ELNES) spectroscopy is an important field of microanalysis in transmission electron microscopy. We present a novel method to study the angular dependence of electron inelastic scattering in anisotropic materials. This method has been applied to the study of 1s -> pi* and sigma* transitions on the carbon K edge in pyrolitic graphite. An excellent agreement between experimental and theoretical two-dimensional scattering patterns has been found. In particular, the need of a fully relativistic calculation of the inelastic scattering cross-section to explain the experimental results is demonstrated. (c) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241592900018 Publication Date 2006-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 5 Open Access
Notes Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:61381UA @ admin @ c:irua:61381 Serial 936
Permanent link to this record
 

 
Author Potapov, P.; Lichte, H.; Verbeeck, J.; van Dyck, D.
Title Experiments on inelastic electron holography Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 106 Issue 11-12 Pages 1012-1018
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Using the combination of an electron biprism and an energy filter, the coherence distribution in an inelastically scattered wave-field is measured. It is found that the degree of coherence decreases rapidly with increasing distance between two superimposed points in the object, and with increasing energy-loss. In a Si sample, coherence of plasmon scattering increases in vacuum with the distance from the edge of the sample. (c) 2006 Published by Elsevier B.V.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241592900009 Publication Date 2006-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 28 Open Access
Notes Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:61380UA @ admin @ c:irua:61380 Serial 1147
Permanent link to this record
 

 
Author Goris, B.; Bals, S.; van den Broek, W.; Verbeeck, J.; Van Tendeloo, G.
Title Exploring different inelastic projection mechanisms for electron tomography Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 111 Issue 8 Pages 1262-1267
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Several different projection mechanisms that all make use of inelastically scattered electrons are used for electron tomography. The advantages and the disadvantages of these methods are compared to HAADFSTEM tomography, which is considered as the standard electron tomography technique in materials science. The different inelastic setups used are energy filtered transmission electron microscopy (EFTEM), thickness mapping based on the log-ratio method and bulk plasmon mapping. We present a comparison that can be used to select the best inelastic signal for tomography, depending on different parameters such as the beam stability and nature of the sample. The appropriate signal will obviously also depend on the exact information which is requested.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461100039 Publication Date 2011-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 21 Open Access
Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:91260UA @ admin @ c:irua:91260 Serial 1151
Permanent link to this record
 

 
Author Verbeeck, J.; Bertoni, G.; Lichte, H.
Title A holographic biprism as a perfect energy filter? Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 111 Issue 7 Pages 887-893
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It has often been stated that a holographic biprism represents a near perfect energy filter and only elastically scattered electrons can participate in the interference fringes. This is based on the assumption that the reference wave does not contain inelastically scattered electrons. In this letter we show that this is not exactly true because of the delocalised inelastic interaction of the reference wave with the sample. We experimentally and theoretically show that inelastic scattering plays a role in the fringe formation, but it is shown that this contribution is small and can usually be neglected in practice. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461000021 Publication Date 2011-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 13 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:97250UA @ admin @ c:irua:97250 Serial 1482
Permanent link to this record
 

 
Author Verbeeck, J.; Béché, A.; van den Broek, W.
Title A holographic method to measure the source size broadening in STEM Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 120 Issue Pages 35-40
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Source size broadening is an important resolution limiting effect in modern STEM experiments. Here, we propose an alternative method to measure the source size broadening making use of a holographic biprism to create interference patterns in an empty Ronchigram. This allows us to measure the exact shape of the source size broadening with a much better sampling than previously possible. We find that the shape of the demagnified source deviates considerably from a Gaussian profile that is often assumed. We fit the profile with a linear combination of a Gaussian and a bivariate Cauchy distribution showing that even though the full width at half maximum is similar to previously reported measurements, the tails of the profile are considerable wider. This is of fundamental importance for quantitative comparison of STEM simulations with experiments as these tails make the image contrast dependent on the interatomic distance, an effect that cannot be reproduced by a single Gaussian profile of fixed width alone.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308082600005 Publication Date 2012-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 29 Open Access
Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant no. 246791 COUNTATOMS and ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. W. Van den Broek acknowledges funding from the Condor project, a project under the supervision of the Embedded Systems Institute (ESI) and FEI. This project is partially supported by the Dutch Ministry of Economic Affairs under the BSIK program. ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:100466UA @ admin @ c:irua:100466 Serial 1483
Permanent link to this record
 

 
Author Krause, F.F.; Ahl, J.P.; Tytko, D.; Choi, P.P.; Egoavil, R.; Schowalter, M.; Mehrtens, T.; Müller-Caspary, K.; Verbeeck, J.; Raabe, D.; Hertkorn, J.; Engl, K.; Rosenauer, A.
Title Homogeneity and composition of AlInGaN : a multiprobe nanostructure study Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 156 Issue 156 Pages 29-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging from 0 to 17 at% and aluminium concentrations between 0 and 39 at% employing high-angle annular dark field scanning electron microscopy (HAADF STEM), energy dispersive X-ray spectroscopy (EDX) and atom probe tomography (APT). EDX mappings reveal distributions of local concentrations which are in good agreement with random alloy atomic distributions. This was hence investigated with HAADF STEM by comparison with theoretical random alloy expectations using statistical tests. To validate the performance of these tests, HAADF STEM image simulations were carried out for the case of a random-alloy distribution of atoms and for the case of In-rich clusters with nanometer dimensions. The investigated samples, which were grown by metal-organic vapor phase epitaxy (MOVPE), were thereby found to be homogeneous on this nanometer scale. Analysis of reconstructions obtained from APT measurements yielded matching results. Though HAADF STEM only allows for the reduction of possible combinations of indium and aluminium concentrations to the proximity of isolines in the two-dimensional composition space. The observed ranges of composition are in good agreement with the EDX and APT results within the respective precisions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000361001800006 Publication Date 2015-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 11 Open Access
Notes 312483 Esteem2; esteem2_ta Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:126965 c:irua:126965UA @ admin @ c:irua:126965 Serial 1485
Permanent link to this record
 

 
Author Verbeeck, J.; Sc hattschneider, P.; Rosenauer, A.
Title Image simulation of high resolution energy filtered TEM images Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 109 Issue 4 Pages 350-360
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Inelastic image simulation software is presented, implementing the double channeling approximation which takes into account the combination of multiple elastic and single inelastic scattering in a crystal. The approach is described with a density matrix formalism. Two applications in high resolution energy filtered (EFTEM) transmission electron microscopy (TEM) images are presented: thickness-defocus maps for SrTiO3 and exit plane intensities for an (LaAlO3)3(SrTiO3)3 multilayer system. Both systems show a severe breakdown in direct interpretability which becomes worse for higher acceleration voltages, thicker samples and lower excitation edge energies. Since this effect already occurs in the exit plane intensity, it is a fundamental limit and image simulations in EFTEM are indispensable just as they are indispensable for elastic high resolution TEM images.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000265345400009 Publication Date 2009-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 36 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:77272UA @ admin @ c:irua:77272 Serial 1552
Permanent link to this record
 

 
Author Potapov, P.L.; Verbeeck, J.; Schattschneider, P.; Lichte, H.; van Dyck, D.
Title Inelastic electron holography as a variant of the Feynman thought experiment Type A1 Journal article
Year 2007 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 107 Issue 8 Pages 559-567
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Using a combination of electron holography and energy filtering, interference fringes produced after inelastic interaction of electrons with hydrogen molecules are examined. Surprisingly, the coherence of inelastic scattering increases when moving from the surface of a hydrogen-containing bubble to the vacuum. This phenomenon can be understood in terms of the Feynman two-slit thought experiment with a variable ambiguity of the which-way registration. (C) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000246937000001 Publication Date 2006-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 13 Open Access
Notes Fwo G.0147.06 Approved Most recent IF: 2.843; 2007 IF: 1.996
Call Number UA @ lucian @ c:irua:103588UA @ admin @ c:irua:103588 Serial 1605
Permanent link to this record
 

 
Author Verbeeck, J.
Title Interpretation of “Energy-filtered electron-diffracted beam holography” by R.A. Herring Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 106 Issue 6 Pages 461-465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A straightforward application of the theoretical framework presented by Verbeeck et al. [Ultramicroscopy 102 (2005) 239] is presented to explain the energy-filtered electron-diffracted beam holography experiments published by Herring [Ultramicroscopy 104 (2005) 261]. It is shown that the theory is in agreement with all experimental findings, which leads to the interpretation that the experiments are mainly measuring the angular coherence of the source image rather than exposing details on the coherence properties of inelastic scattering. A change in experimental parameters is proposed, which could result in interesting information about the coherence in all inelastic scattering process. (c) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000237491600002 Publication Date 2006-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 8 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:58283UA @ admin @ c:irua:58283 Serial 1710
Permanent link to this record
 

 
Author Schattschneider, P.; Löffler, S.; Stöger-Pollach, M.; Verbeeck, J.
Title Is magnetic chiral dichroism feasible with electron vortices? Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 136 Issue Pages 81-85
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We discuss the feasibility of detecting magnetic transitions with focused electron vortex probes, suggested by selection rules for the magnetic quantum number. We theoretically estimate the dichroic signal strength in the L2,3 edge of ferromagnetic d metals. It is shown that under realistic conditions, the dichroic signal is undetectable for nanoparticles larger than View the MathML source. This is confirmed by a key experiment with nanometer-sized vortices.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000327884700011 Publication Date 2013-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 64 Open Access
Notes Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:110952UA @ admin @ c:irua:110952 Serial 1750
Permanent link to this record
 

 
Author Verbeeck, J.; Van Aert, S.
Title Model based quantification of EELS spectra Type A1 Journal article
Year 2004 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 101 Issue 2/4 Pages 207-224
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recent advances in model based quantification of electron energy loss spectra (EELS) are reported. The maximum likelihood method for the estimation of physical parameters describing an EELS spectrum, the validation of the model used in this estimation procedure, and the computation of the attainable precision, that is, the theoretical lower bound on the variance of these estimates, are discussed. Experimental examples on An and GaAs samples show the power of the maximum likelihood method and show that the theoretical prediction of the attainable precision can be closely approached even for spectra with overlapping edges where conventional EELS quantification fails. To provide end-users with a low threshold alternative to conventional quantification, a user friendly program was developed which is freely available under a GNU public license. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000224046100016 Publication Date 2004-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 147 Open Access
Notes Fwo; Iuap P5/01 Approved Most recent IF: 2.843; 2004 IF: 2.215
Call Number UA @ lucian @ c:irua:57130UA @ admin @ c:irua:57130 Serial 2101
Permanent link to this record
 

 
Author Verbeeck, J.; Van Aert, S.; Bertoni, G.
Title Model-based quantification of EELS spectra: including the fine structure Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 106 Issue 11-12 Pages 976-980
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract An extension to model-based electron energy loss spectroscopy (EELS) quantification is reported to improve the possibility of modelling fine structure changes in electron energy loss spectra. An equalisation function is used in the energy loss near edge structure (ELNES) region to model the differences between a single atom differential cross section and the cross section for an atom in a crystal. The equalisation function can be shown to approximate the relative density of unoccupied states for the given excitation edge. On a set of 200 experimental h-BN spectra, this technique leads to statistically acceptable models resulting into unbiased estimates of relative concentrations and making the estimated precisions come very close to the Cramer-Rao lower bound (CRLB). The method greatly expands the useability of model-based EELS quantification to spectra with pronounced fine structure. Another benefit of this model is that one also gets an estimate of the unoccupied density of states for a given excitation edge, without having to do background removal and deconvolution, making the outcome intrinsically more reliable and less noisy. (c) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241592900004 Publication Date 2006-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 38 Open Access
Notes Goa; Fwo Iap-V Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:61379UA @ admin @ c:irua:61379 Serial 2102
Permanent link to this record
 

 
Author Verbeeck, J.; Bertoni, G.
Title Model-based quantification of EELS spectra: treating the effect of correlated noise Type A1 Journal article
Year 2008 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 108 Issue 2 Pages 74-83
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Correlated noise is generally present in experimentally recorded electron energy loss spectra due to a non-ideal electron detector. In this contribution we describe a method to experimentally measure the noise properties of the detector as well as the consequences it has for model-based quantification using maximum likelihood. The effect of the correlated noise on the maximum likelihood fitting results can be shown to be negligible for the estimated (co)variance of the parameters while an experimentally obtained scaling factor is required to correct the likelihood ratio test for the reduction of noise power with frequency. Both effects are derived theoretically under a set of approximations and tested for a range of signal-to-noise values using numerical experiments. Finally, an experimental example shows that the correction for correlated noise is essential and should always be included in the fitting procedure. (c) 2007 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000252816900002 Publication Date 2007-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 16 Open Access
Notes FWO nr G.0147.06; ESTEEM 026019 Approved Most recent IF: 2.843; 2008 IF: 2.629
Call Number UA @ lucian @ c:irua:67602UA @ admin @ c:irua:67602 Serial 2103
Permanent link to this record
 

 
Author Verbeeck, J.; Tian, H.; Béché, A.
Title A new way of producing electron vortex probes for STEM Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy
Volume 113 Issue Pages 83-87
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A spiral holographic aperture is used in the condensor plane of a scanning transmission electron microscope to produce a focussed electron vortex probe carrying a topological charge of either −1, 0 or +1. The spiral aperture design has a major advantage over the previously used forked aperture in that the three beams with topological charge m=−1, 0, and 1 are not side by side in the specimen plane, but rather on top of each other, focussed at different heights. This allows us to have only one selected beam in focus on the sample while the others contribute only to a background signal. In this paper we describe the working principle as well as first experimental results demonstrating atomic resolution HAADF STEM images obtained with electron vortex probes. These results pave the way for atomic resolution magnetic information when combined with electron energy loss spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300554400002 Publication Date 2011-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 62 Open Access
Notes J.V. wants to thank Miles Padgett for suggesting this setup and pointing to the relevant optics literature. Peter Schattschneider is acknowledged for in depth discussions on related topics. J.V acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant no. 46791-COUN-TATOMS and ERC Starting Grant no. 278510 VORTEX. The Qu-Ant-EM microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:93624UA @ admin @ c:irua:93624 Serial 2336
Permanent link to this record