|   | 
Details
   web
Records
Author Wu, Z.; Zhai, F.; Peeters, F.M.; Xu, H.Q.; Chang, K.
Title Valley-dependent brewster angles and Goos-Hänchen effect in strained graphene Type A1 Journal article
Year (down) 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 106 Issue 17 Pages 176802,1-176802,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate theoretically how local strains in graphene can be tailored to generate a valley-polarized current. By suitable engineering of local strain profiles, we find that electrons in opposite valleys (K or K′) show different Brewster-like angles and Goos-Hänchen shifts, exhibiting a close analogy with light propagating behavior. In a strain-induced waveguide, electrons in K and K′ valleys have different group velocities, which can be used to construct a valley filter in graphene without the need for any external fields.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000290100300016 Publication Date 2011-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 235 Open Access
Notes ; This work was supported by the NSF of China and the MOST, the Swedish International Development Cooperation Agency (SIDA), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:89715 Serial 3832
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Peeters, F.M.
Title Binary dusty plasma Coulomb balls Type A1 Journal article
Year (down) 2011 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 83 Issue 4 Pages 041136,1-041136,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigated the mixing and segregation of a system consisting of two different species of particles, having different charges, interacting through a pure Coulomb potential, and confined in a three-dimensional parabolic trap. The structure of the cluster and its normal mode spectrum are analyzed as a function of the relative charge and the relative number of different types of particles. We found that (a) the system can be in a mixed or segregated state depending on the relative charge ratio parameter and (b) the segregation process is mediated by a first or second order structural phase transition which strongly influences the magic cluster properties of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000290154900004 Publication Date 2011-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 10 Open Access
Notes ; This work was supported by FACEPE (Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.366; 2011 IF: 2.255
Call Number UA @ lucian @ c:irua:89716 Serial 236
Permanent link to this record
 

 
Author Wu, Z.; Peeters, F.M.; Chang, K.
Title Spin and momentum filtering of electrons on the surface of a topological insulator Type A1 Journal article
Year (down) 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 16 Pages 162101,1-162101,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate theoretically the transport properties of Dirac fermions on the surface of a three-dimensional topological insulator. Dirac electrons can be totally reflected in front of a magnetic/electric p-n junction. For a p-n-p structure, multiple total internal reflections at the interfaces result in the bound states in the channel, which behaves like an electronic waveguide. This p-n-p like structure exhibits spin and momentum filtering features and could be used as a spin and/or charge diode.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000289842700032 Publication Date 2011-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 33 Open Access
Notes ; ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:89971 Serial 3076
Permanent link to this record
 

 
Author Ding, F.; Li, B.; Akopian, N.; Perinetti, U.; Chen, Y.H.; Peeters, F.M.; Rastelli, A.; Zwiller, V.; Schmidt, O.G.
Title Single neutral excitons confined in AsBr3 in situ etched InGaAs quantum rings Type A1 Journal article
Year (down) 2011 Publication Journal of nanoelectronics and optoelectronics Abbreviated Journal J Nanoelectron Optoe
Volume 6 Issue 1 Pages 51-57
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We observe the evolution of single self-assembled semiconductor quantum dots into quantum rings during AsBr3 in situ etching. The direct three-dimensional imaging of In(Ga)As nanostructures embedded in GaAs matrix is demonstrated by selective wet chemical etching combined with atomic force microscopy. Single neutral excitons confined in these quantum rings are studied by magneto-photoluminescence. Oscillations in the exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we demonstrate that the period of the oscillations can be tuned by a gate potential that modifies the exciton confinement. The experimental results, combined with calculations, indicate that the exciton Aharonov-Bohm effect may account for the observed effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000290692200005 Publication Date 2011-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1555-130X;1555-1318; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.497 Times cited 3 Open Access
Notes ; We acknowledge L. P. Kouwenhoven and Z. G. Wang for support, C. C. Bof Bufon, C. Deneke, V. Fomin, A. Govorov, S. Kiravittaya, and Wen-Hao Chang for their help and discussions. We are grateful for the financial support of NWO (VIDI), the CAS-MPG programm, the DFG (FOR730), BMBF (No. 01BM459), NSFC China (60625402), and Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 0.497; 2011 IF: 0.556
Call Number UA @ lucian @ c:irua:90187 Serial 3025
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Peeters, F.M.
Title Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane Type A1 Journal article
Year (down) 2011 Publication Carbon Abbreviated Journal Carbon
Volume 49 Issue 10 Pages 3258-3266
Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES)
Abstract Chemisorption of hydrogen on graphene is studied using atomistic simulations with the second generation of reactive empirical bond order Brenner inter-atomic potential. The lowest energy adsorption sites and the most important metastable sites are determined. The H concentration is varied from a single H atom, to clusters of H atoms up to full coverage. We found that when two or more H atoms are present, the most stable configurations of H chemisorption on a single graphene layer are ortho hydrogen pairs adsorbed on one side or on both sides of the graphene sheet. The latter has the highest hydrogen binding energy. The next stable configuration is the orthopara pair combination, and then para hydrogen pairs. The structural changes of graphene caused by chemisorbed hydrogen are discussed and are compared with existing experimental data and other theoretical calculations. The obtained results will be useful for nanoengineering of graphene by hydrogenation and for hydrogen storage.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000291959300014 Publication Date 2011-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 46 Open Access
Notes ; A.D. thanks M.W. Zhao for a useful correspondence. This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378
Call Number UA @ lucian @ c:irua:90877 Serial 3275
Permanent link to this record
 

 
Author Matulis, A.; Masir, M.R.; Peeters, F.M.
Title Application of optical beams to electrons in graphene Type A1 Journal article
Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 11 Pages 115458-115458,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288896400013 Publication Date 2011-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This research was supported by the Flemish Science Foundation (Grant No. FWO-Vl), by the Belgian Science policy (IAP), and (in part) by the Lithuanian Science Council under project No. MIP-79/2010. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89377 Serial 142
Permanent link to this record
 

 
Author Li, B.; Peeters, F.M.
Title Tunable optical Aharonov-Bohm effect in a semiconductor quantum ring Type A1 Journal article
Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 11 Pages 115448-115448,13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By applying an electric field perpendicular to a semiconductor quantum ring we show that it is possible to modify the single particle wave function between quantum dot (QD)-like and ring-like. The constraints on the geometrical parameters of the quantum ring to realize such a transition are derived. With such a perpendicular electric field we are able to tune the Aharanov-Bohm (AB) effect for both the single particle and for excitons. The tunability is in both the strength of the AB effect as well as in its periodicity. We also investigate the strain induce potential inside the self-assembled quantum ring and the effect of the strain on the AB effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288855200012 Publication Date 2011-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 25 Open Access
Notes ; This work was supported by the EU-NoE: SANDiE, the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC, vzw collaborative project. We are grateful to Prof. M. Tadic and Dr. Fei Ding for stimulating discussions. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89376 Serial 3744
Permanent link to this record
 

 
Author Földi, P.; Szaszkó-Bogár, V.; Peeters, F.M.
Title High-temperature conductance of a two-dimensional superlattice controlled by spin-orbit interaction Type A1 Journal article
Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 11 Pages 115313-115313,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Rashba-type spin-orbit interaction (SOI) controlled band structure of a two-dimensional superlattice allows for the modulation of the conductance of finite size devices by changing the strength of the SOI. We consider rectangular arrays and find that the temperature dependence of the conductance disappears for high temperatures, but the strength of the SOI still affects the conductance at these temperatures. The modulation effect can be seen even in the presence of strong dephasing, which can be important for practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288242800007 Publication Date 2011-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; We thank M. G. Benedict and F. Bartha for useful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and M045596 and by the “TAMOP-4.2.1/B-09/1/KONV-2010-0005 project: Creating the Center of Excellence at the University of Szeged” supported by the EU and the European Regional Development Fund. P.F. was supported by a J. Bolyai grant of the Hungarian Academy of Sciences. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88778 Serial 1466
Permanent link to this record
 

 
Author Carvalho, J.C.N.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M.
Title Yukawa particles confined in a channel and subject to a periodic potential : ground state and normal modes Type A1 Journal article
Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 9 Pages 094109-094109,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We consider a classical system of two-dimensional (2D) charged particles, interacting through a repulsive Yukawa potential exp(-r/λ)/r, and confined in a parabolic channel that limits the motion of the particles in the y direction. Along the x direction, the particles are subject to a periodic potential. The ground-state configurations and the normal-mode spectra of the system are obtained as a function of the periodicity and strength of the periodic potential (V0) and density. An interesting set of tunable ground-state configurations are found, with first- or second-order structural transitions between them. A configuration with particles aligned, perpendicular to the x direction, in each minimum of the periodic potential is obtained for V0 larger than some critical value that has a power-law dependence on the density. The phonon spectrum of different configurations was also calculated. A localization of the modes into a small frequency interval is observed for sufficiently large strength of the periodic potential, and a tunable gap in the phonon spectrum is found as a function of V0.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288119700001 Publication Date 2011-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Brazilian agencies CNPq and FUNCAP (PRONEX-Grant), and the bilateral projects between Flanders and Brazil and the Flemish Science Foundation (FWO-VI) and CNPq. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88779 Serial 3928
Permanent link to this record
 

 
Author Hao, Y.L.; Djotyan, A.P.; Avetisyan, A.A.; Peeters, F.M.
Title D- shallow donor near a semiconductor-metal and a semiconductor-dielectric interface Type A1 Journal article
Year (down) 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 23 Issue 11 Pages 115303,1-115313,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground state energy and the extent of the wavefunction of a negatively charged donor (D − ) located near a semiconductormetal or a semiconductordielectric interface are obtained. We apply the effective mass approximation and use a variational two-electron wavefunction that takes into account the influence of all image charges that arise due to the presence of the interface, as well as the correlation between the two electrons bound to the donor. For a semiconductormetal interface, the D − binding energy is enhanced for donor positions d > 1.5aB (aB is the effective Bohr radius) due to the additional attraction of the electrons with their images. When the donor approaches the interface (i.e. d < 1.5aB) the D − binding energy drops and eventually it becomes unbound. For a semiconductordielectric (or a semiconductorvacuum) interface the D − binding energy is reduced for any donor position as compared to the bulk case and the system becomes rapidly unbound when the donor approaches the interface.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000287969200013 Publication Date 2011-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 5 Open Access
Notes ; This work was supported by the Belgian Science Policy (IAP) and the Brazilian Science Foundation CNPq. One of us (AAA) was supported by a fellowship from the Belgian Federal Science Policy Office (IAP). ; Approved Most recent IF: 2.649; 2011 IF: 2.546
Call Number UA @ lucian @ c:irua:88828 Serial 3528
Permanent link to this record
 

 
Author Chaves, A.; Peeters, F.M.; Farias, G.A.; Milošević, M.V.
Title Vortex-vortex interaction in bulk superconductors : Ginzburg-Landau theory Type A1 Journal article
Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 5 Pages 054516-054516,14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The vortex-vortex interaction potential in bulk superconductors is calculated within the Ginzburg-Landau (GL) theory and is obtained from a numerical solution of a set of two coupled nonlinear GL differential equations for the vector potential and the superconducting order parameter, where the merger of vortices into a giant vortex is allowed. Further, the interaction potentials between a vortex and a giant vortex and between a vortex and an antivortex are obtained for both type-I and type-II superconductors. Our numerical results agree asymptotically with the analytical expressions for large intervortex separations that are available in the literature. We propose empirical expressions valid over the full interaction range, which are fitted to our numerical data for different values of the GL parameter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287712100009 Publication Date 2011-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes ; Discussions with J. S. Andrade Jr. and A. A. Moreira are gratefully acknowledged. This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES, the Bilateral programme between Flanders and Brazil, the collaborative project CNPq-FWO-Vl, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88805 Serial 3899
Permanent link to this record
 

 
Author Vansweevelt, R.; Mortet, V.; D' Haen, J.; Ruttens, bart; van Haesendonck, C.; Partoens, B.; Peeters, F.M.; Wagner, P.
Title Study on the giant positive magnetoresistance and Hall effect in ultrathin graphite flakes Type A1 Journal article
Year (down) 2011 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 208 Issue 6 Pages 1252-1258
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this paper, we report on the electronic transport properties of mesoscopic, ultrathin graphite flakes with a thickness corresponding to a stack of 150 graphene layers. The graphite flakes show an unexpectedly strong positive magnetoresistance (PMR) already at room temperature, which scales in good approximation with the square of the magnetic field. Furthermore, we show that the resistivity is unaffected by magnetic fields oriented in plane with the graphene layers. Hall effect measurements indicate that the charge carriers are p-type and their concentration increases with increasing temperature while the mobility is decreasing. The Hall voltage is non-linear in higher magnetic fields. Possible origins of the observed effects are discussed. Ball and stick model of the two topmost carbon layers of the hexagonal graphite structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292945800008 Publication Date 2011-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 8 Open Access
Notes ; The authors gratefully acknowledge the support by FWO – Research Foundation Flanders (project G.0159.07 “Structural and electronic properties of biologically modified, graphene-based layers”), by the Federal Belgian Interuniversity Attraction Poles Programme BELSPO (project TAP VI P6/42 “Quantum effects in clusters and nanowires”) and by the Methusalem network “NANO – Antwerp-Hasselt,” funded by the Flemish Community. Technical assistance by Stoffel D. Janssens (magnet calibration and software development), Dr. Hong Yin (AFM-based thickness studies), Dr. Ronald Thoelen (data analysis), and Prof. Hans-Gerd Boyen (XPS spectroscopy) is greatly appreciated. ; Approved Most recent IF: 1.775; 2011 IF: 1.463
Call Number UA @ lucian @ c:irua:91941 Serial 3343
Permanent link to this record
 

 
Author Nga, T.T.N.; Peeters, F.M.
Title Influence of electron-electron interaction on the cyclotron resonance spectrum of magnetic quantum dots containing few electrons Type A1 Journal article
Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 7 Pages 075419-075419,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The configuration interaction method is used to obtain the magneto-optical absorption spectrum of a few-electron (Ne=1,2,,5) quantum dot containing a single magnetic ion. We find that the IR spectrum (the position, the number, and the oscillator strength of the cyclotron resonance peaks) depends on the strength of the Coulomb interaction, the number of electrons, and the position of the magnetic ion. We find that the Kohn theorem is no longer valid as a consequence of the electron-spin-magnetic-ion-spin-exchange interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287584600011 Publication Date 2011-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; This work was supported by FWO-Vl (Flemish Science Foundation), the Brazilian science foundation CNPq, and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88912 Serial 1620
Permanent link to this record
 

 
Author Peelaers, H.; Hernández-Nieves, A.D.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Vibrational properties of graphene fluoride and graphane Type A1 Journal article
Year (down) 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 5 Pages 051914
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The vibrational properties of graphene fluoride and graphane are studied using ab initio calculations. We find that both sp(3) bonded derivatives of graphene have different phonon dispersion relations and phonon densities of states as expected from the different masses associated with the attached atoms of fluorine and hydrogen, respectively. These differences manifest themselves in the predicted temperature behavior of the constant-volume specific heat of both compounds. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551712]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000286988400027 Publication Date 2011-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 66 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Contract No. FW /08/01). A.D.H.-N. is also supported by ANPCyT (under Grant No. PICT2008-2236) ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:105604 Serial 3844
Permanent link to this record
 

 
Author Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title Extended Ginzburg-Landau formalism for two-band superconductors Type A1 Journal article
Year (down) 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 106 Issue 4 Pages 047005-047005,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent observation of unusual vortex patterns in MgB2 single crystals raised speculations about possible type-1.5 superconductivity in two-band materials, mixing the properties of both type-I and type-II superconductors. However, the strict application of the standard two-band Ginzburg-Landau (GL) theory results in simply proportional order parameters of the two bandsand does not support the type-1.5 behavior. Here we derive the extended GL formalism (accounting all terms of the next order over the small τ=1-T/Tc parameter) for a two-band clean s-wave superconductor and show that the two condensates generally have different spatial scales, with the difference disappearing only in the limit T→Tc. The extended version of the two-band GL formalism improves the validity of GL theory below Tc and suggests revisiting the earlier calculations based on the standard model.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000286734100010 Publication Date 2011-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 84 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. Discussions with M. D. Croitoru are gratefully acknowledged. ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:88038 Serial 1154
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Giantomassi, M.; Rangel, T.; Goossens, E.; Rignanese, G.-M.; Gonze, X.; Peeters, F.M.
Title Convergence of quasiparticle band structures of Si and Ge nanowires in the GW approximation and the validity of scissor shifts Type A1 Journal article
Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 4 Pages 045306-045306,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from fully converged density-functional theory calculations, the quasiparticle corrections are calculated for different sized Si and Ge nanowires using the GW approximation. The effectiveness of recently developed techniques in speeding up the convergence of the quasiparticle calculations is demonstrated. The complete quasiparticle band structures are also obtained using an interpolation technique based on maximallylocalized Wannier functions. From the quasiparticle results, we assess the correctness of the commonly applied scissor-shift correction. Dispersion changes are observed, which are also reflected in changes in the effective band masses calculated taking into account quasiparticle corrections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286771400004 Publication Date 2011-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; We are grateful to Yann Pouillon for valuable technical support with the build system of ABINIT, related to the WANNIER90 library. This work was supported by the Flemish Science Foundation (FWO-Vl) and by the Interuniversity Attraction Poles Program (P6/42)-Belgian State-Belgian Science Policy. X. G. and G.-M. R. acknowledge funding from the EU's 7th Framework Programme through the ETSF I3 e-Infrastructure project (Grant No. 211956), the Communaute francaise de Belgique through the Action de Recherche Concertee 07/12-003 “Nanosystemes hybrides metal-organiques,” and the Wallon Region Project No. 816849 “ European Theoretical Spectroscopy Facility” (WALL ETSF). M. G. acknowledges funding from the FRFC Project No. 2.4.589.09.F. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:86905 Serial 510
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.; Jankó, B.
Title Vortex manipulation in superconducting films with tunable magnetic topology Type A1 Journal article
Year (down) 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue 2 Pages 024001-024001,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a combination of the phenomenological GinzburgLandau theory and micromagnetic simulations, we study properties of a superconducting film with an array of soft magnetic dots on top. An external in-plane magnetic field gradually drives the magnets from an out-of-plane or magnetic vortex state to an in-plane single-domain state, which changes spatially the distribution of the superconducting condensate. If induced by the magnets, the vortexantivortex molecules exhibit rich transitions as a function of the applied in-plane field. At the same time, we show how the magnetic dots act as very effective dynamic pinning centers for vortices in an applied perpendicular magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000286379900002 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 8 Open Access
Notes ; This research was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the JSPS/ESF-NES program, the bilateral project between Flanders and the USA, NSF NIRT, ECS-0609249, and the Institute for Theoretical Sciences. ; Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88731 Serial 3870
Permanent link to this record
 

 
Author Kapra, A.V.; Misko, V.R.; Vodolazov, D.Y.; Peeters, F.M.
Title The guidance of vortex-antivortex pairs by in-plane magnetic dipoles in a superconducting finite-size film Type A1 Journal article
Year (down) 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue 2 Pages 024014-024014,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The possibility of manipulating vortex matter by using various artificial pinning arrays is of significant importance for possible applications in nano and micro fluxonics devices. By numerically solving the time-dependent GinzburgLandau equations, we study the vortexantivortex (vav) dynamics in a hybrid structure consisting of a finite-size superconductor with magnetic dipoles on top which generate vav pairs in the presence of an external current. The vav dynamics is analyzed for different arrangements and magnetic moments of the dipoles, as a function of angle α between the direction of the magnetic dipole and that of the Lorentz force produced by the applied current. The interplay of the attractive interaction between a vav pair and the Lorentz force leads either to the separation of (anti)vortices and their motion in opposite directions or to their annihilation. We found a critical angle αc, below which vortices and antivortices are repelled, while for larger angles they annihilate. In case of a single (few) magnetic dipole(s), this magnetic dipole induced vav guidance is influenced by the self-interaction of the vav pairs with their images in a finite-size sample, while for a periodic array of dipoles the guidance is determined by the interaction of a vav pair with other dipoles and vav pairs created by them. This effect is tunable through the external current and the magnetization and size of the magnetic dipoles.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000286379900015 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 28 Open Access
Notes ; This work was supported by the 'Odysseus' program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-Vl. DYV acknowledges support from the Russian Fund for Basic Research and Russian Agency of Education under the Federal Programme 'Scientific and educational personnel of innovative Russia in 2009-2013'. ; Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88732 Serial 1399
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Buckled circular monolayer graphene : a graphene nano-bowl Type A1 Journal article
Year (down) 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 23 Issue 4 Pages 045002-045002,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the stability of circular monolayer graphene subjected to a radial load using non-equilibrium molecular dynamics simulations. When monolayer graphene is radially stressed, after some small circular strain (~0.4%) it buckles and bends into a new bowl-like shape. Young's modulus is calculated from the linear relation between stress and strain before the buckling threshold, which is in agreement with experimental results. The prediction of elasticity theory for the buckling threshold of a radially stressed plate is presented and its results are compared to the one of our atomistic simulation. The Jarzynski equality is used to estimate the difference between the free energy of the non-compressed states and the buckled states. From a calculation of the free energy we obtain the optimum radius for which the system feels the minimum boundary stress.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000286142800003 Publication Date 2010-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 27 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 2.649; 2011 IF: 2.546
Call Number UA @ lucian @ c:irua:88043 Serial 259
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M.
Title Superconducting nanowires : new type of BCS-BEC crossover driven by quantum-size effects Type P1 Proceeding
Year (down) 2011 Publication Abbreviated Journal
Volume Issue Pages 119-127
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We show that a superconducting quantum nanowire undergoes a new type of BCS-BEC crossover each time when an electron subband approaches the Fermi surface. In this case the longitudinal Cooper-pair size drops by two-three orders of magnitude down to a few nanometers. This unconventional BCS-BEC crossover is driven by quantum-size effects rather than by tuning the fermion-fermion interaction.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos 000289872900009 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-6500;1874-6535; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the ESF-network: INSTANS. M.D.C. acknowledges support from the Alexander von Humboldt Foundation. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:89946 Serial 3359
Permanent link to this record
 

 
Author Karapetrov, G.; Belkin, A.; Iavarone, M.; Fedor, J.; Novosad, V.; Milošević, M.V.; Peeters, F.M.
Title Anisotropic superconductivity and vortex dynamics in magnetically coupled F/S and F/S/F hybrids Type A1 Journal article
Year (down) 2011 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 24 Issue 1/2 Pages 905-910
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetically coupled superconductorferromagnet hybrids offer advanced routes for nanoscale control of superconductivity. Magnetotransport characteristics and scanning tunneling microscopy images of vortex structures in superconductorferromagnet hybrids reveal rich superconducting phase diagrams. Focusing on a particular combination of a ferromagnet with a well-ordered periodic magnetic domain structure with alternating out-of-plane component of magnetization, and a small coherence length superconductor, we find directed nucleation of superconductivity above the domain wall boundaries. We show that near the superconductor-normal state phase boundary the superconductivity is localized in narrow mesoscopic channels. In order to explore the Abrikosov flux line ordering in F/S hybrids, we use a combination of scanning tunneling microscopy and GinzburgLandau simulations. The magnetic stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinninganti-pinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-1D arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. In F/S/F hybrids we demonstrate the evolution of the anisotropic conductivity in the superconductor that is magnetically coupled with two adjacent ferromagnetic layers. Stripe magnetic domain structures in both F-layers are aligned under each other, resulting in a directional superconducting order parameter in the superconducting layer. The conductance anisotropy strongly depends on the period of the magnetic domains and the strength of the local magnetization. The anisotropic conductivity of up to three orders of magnitude can be achieved with a spatial critical temperature modulation of 5% of T c. Induced anisotropic properties in the F/S and F/S/F hybrids have a potential for future application in switching and nonvolatile memory elements operating at low temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000289855700150 Publication Date 2010-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939;1557-1947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited 2 Open Access
Notes ; This work as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory were supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work was also supported by the Ministry of Education, Agency for Structural Funds of the European Union, Research and Development Program, under agreement 262 401 200 19. M.V.M. and F. M. P. acknowledge support from the Flemish Science Foundation (FWO-VI), the Belgian Science Policy, the JSPS/ESF-NES program, the ESF-AQDJJ network, and the Vlaanderen-USA bilateral program. ; Approved Most recent IF: 1.18; 2011 IF: 0.650
Call Number UA @ lucian @ c:irua:89930 Serial 130
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M.
Title Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 23 Pages 235425-235425,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286769100008 Publication Date 2010-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:86911 Serial 1010
Permanent link to this record
 

 
Author Li, L.L.; Xu, W.; Peeters, F.M.
Title Intrinsic optical anisotropy of [001]-grown short-period InAs/GaSb superlattices Type A1 Journal article
Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 23 Pages 235422-235422,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the intrinsic optical anisotropy or polarization induced by the microscopic interface asymmetry (MIA) in no-common-atom (NCA) InAs/GaSb superlattices (SLs) grown along the [001] direction. The eight-band K⋅P model is used to calculate the electronic band structures and incorporates the MIA effect. A Boltzmann equation approach is employed to calculate the optical properties. We found that in NCA InAs/GaSb SLs, the MIA effect causes a large in-plane optical anisotropy for linearly polarized light and the largest anisotropy occurs for light polarized along the [110] and [11̅ 0] directions. The relative difference between the optical-absorption coefficient for [110]-polarized light and that for [11̅ 0]-polarized light is found to be larger than 50%. The dependence of the in-plane optical anisotropy on temperature, photoexcited carrier density, and layer width is examined in detail. This study is important for optical devices which require the polarization control and selectivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286768800007 Publication Date 2010-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported partly by the Flemish Science Foundation (FWO-VL), the Belgium Science Policy (IAP), the NSF of China (Grants No. 10664006, No. 10504036, and No. 90503005), Special Funds of 973 Project of China (Grant No. 2005CB623603), and Knowledge Innovation Program of the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:88909 Serial 1717
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
Title Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons Type A1 Journal article
Year (down) 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue 23 Pages 233109,1-233109,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ∼ 0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000285364000067 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 43 Open Access
Notes ; The financial supports by the Vice-Chancellor's Postdoctoral Research Fellowship Program of the University of New South Wales (SIR50/PS19184), the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP) are acknowledged. A.D.H. acknowledges also support from ANPCyT (Grant No. PICT2008-2236) and the collaborative project FWO-MINCyT (FW/08/01). ; Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:86972 Serial 1056
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.
Title Kronig-Penney model on bilayer graphene : spectrum and transmission periodic in the strength of the barriers Type A1 Journal article
Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 23 Pages 235408-235408,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that the transmission through single and double δ-function potential barriers of strength P=VWb/ℏvF in bilayer graphene is periodic in P with period π. For a certain range of P values we find states that are bound to the potential barrier and that run along the potential barrier. Similar periodic behavior is found for the conductance. The spectrum of a periodic succession of δ-function barriers (Kronig-Penney model) in bilayer graphene is periodic in P with period 2π. For P smaller than a critical value Pc, the spectrum exhibits two Dirac points while for P larger than Pc an energy gap opens. These results are extended to the case of a superlattice of δ-function barriers with P alternating in sign between successive barriers; the corresponding spectrum is periodic in P with period π.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286766900008 Publication Date 2010-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 34 Open Access
Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the Canadian NSERC under Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:88910 Serial 1768
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M.
Title Second-order multiple-quanta flux entry into a perforated spherical mesoscopic superconductor Type A1 Journal article
Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 21 Pages 214501-214501,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Flux entry in type-II superconductors without prominent symmetry is a first-order phase transition, where flux enters conventionally gradual in units of a flux quantum. Here we show that neither is necessarily the case in a mesoscopic superconducting sphere with a perforation. In axially applied magnetic field, vortices initially occupy the hole, and can oppose further flux entry in the sample. As a result, multiple-quanta flux entry is found at significantly higher field, and it can manifest as a second-order transition due to suppressed geometric barrier at the equatorial belt of the sample. At high fields a new state is found, with gradually destroyed condensate from the equator inwards, the exact opposite of surface superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286737800007 Publication Date 2010-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the ESF “Nanoscience and Engineering in Superconductivity” program. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:88039 Serial 2957
Permanent link to this record
 

 
Author Chaves, A.; Covaci, L.; Rakhimov, K.Y.; Farias, G.A.; Peeters, F.M.
Title Wave-packet dynamics and valley filter in strained graphene Type A1 Journal article
Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 20 Pages 205430
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The time evolution of a wave packet in strained graphene is studied within the tight-binding model and continuum model. The effect of an external magnetic field, as well as a strain-induced pseudomagnetic field, on the wave-packet trajectories and zitterbewegung are analyzed. Combining the effects of strain with those of an external magnetic field produces an effective magnetic field which is large in one of the Dirac cones, but can be practically zero in the other. We construct an efficient valley filter, where for a propagating incoming wave packet consisting of momenta around the K and K' Dirac points, the outgoing wave packet exhibits momenta in only one of these Dirac points while the components of the packet that belong to the other Dirac point are reflected due to the Lorentz force. We also found that the zitterbewegung is permanent in time in the presence of either external or strain-induced magnetic fields, but when both the external and strain-induced magnetic fields are present, the zitterbewegung is transient in one of the Dirac cones, whereas in the other cone the wave packet exhibits permanent spatial oscillations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000284401600007 Publication Date 2010-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 95 Open Access
Notes ; This work was financially supported by CNPq under NanoBioEstruturas Contract No. 555183/2005-0, PRONEX/CNPq/FUNCAP, CAPES, the Bilateral program between Flanders and Brazil, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1) ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:95542 Serial 3905
Permanent link to this record
 

 
Author Leenaerts, O.; Peelaers, H.; Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of graphene fluoride and graphane Type A1 Journal article
Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 19 Pages 195436,1-195436,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Different stoichiometric configurations of graphane and graphene fluoride are investigated within density-functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000284399200004 Publication Date 2010-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 367 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the NOI-BOF of the University of Antwerp, the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Grant No. FW/08/01). A.D.H. also acknowledges support from ANPCyT (Grant No. PICT 2008-2236). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:86916 Serial 1212
Permanent link to this record
 

 
Author Yang, C.H.; Peeters, F.M.; Xu, W.
Title Density of states and magneto-optical conductivity of graphene in a perpendicular magnetic field Type A1 Journal article
Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 20 Pages 205428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The density of states (DOS) and the optical conductivity of graphene is calculated in the presence of a perpendicular magnetic field and where scattering on charged and short-range impurities is included. The standard Kubo formula is employed where the self-energy induced by impurity scattering and the Green's function are calculated self-consistently including inter-Landau level (LL) coupling and screening effects. It is found that the scattering from those two types of impurities results in a symmetric LL broadening and asymmetric inter-LL coupling renormalizes the LL positions to lower energy. The peak position and intensity of the magneto-optical conductivity depends on the filling factor and the broadened DOS. Good agreement is found with recent cyclotron resonance measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000284400700003 Publication Date 2010-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 39 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. 10804053, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the Chinese Academy of Sciences and Department of Science and Technology of Yunnan Province. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:95543 Serial 641
Permanent link to this record
 

 
Author Misko, V.R.; Bothner, D.; Kemmler, M.; Kleiner, R.; Koelle, D.; Peeters, F.M.; Nori, F.
Title Enhancing the critical current in quasiperiodic pinning arrays below and above the matching magnetic flux Type A1 Journal article
Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 18 Pages 184512-184512,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quasiperiodic pinning arrays, as recently demonstrated theoretically and experimentally using a fivefold Penrose tiling, can lead to a significant enhancement of the critical current Ic as compared to traditional regular pinning arrays. However, while regular arrays showed only a sharp peak in Ic(Φ) at the matching flux Φ1 and quasiperiodic arrays provided a much broader maximum at Φ<Φ1, both types of pinning arrays turned out to be inefficient for fluxes larger than Φ1. We demonstrate theoretically and experimentally the enhancement of Ic(Φ) for Φ>Φ1 by using non-Penrose quasiperiodic pinning arrays. This result is based on a qualitatively different mechanism of flux pinning by quasiperiodic pinning arrays and could be potentially useful for applications in superconducting microelectronic devices operating in a broad range of magnetic fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000283923400006 Publication Date 2010-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 33 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, the FWO-Vl, and by the DFG via SFB/TRR21. V. R. M. is grateful to the FWO-Vl for the support of the research stay at the DML (ASI, RIKEN), and to F. N. for hospitality. M. K. gratefully acknowledges support from the Carl-Zeiss-Stiftung, and D. B. from the Evangelisches Studienwerk e.V. Villigst. F. N. acknowledges partial support from the Laboratory of Physical Sciences, National Security Agency, Army Research Office, DARPA, AFOSR, National Science Foundation under Grant No. 0726909, JSPS-RFBR under Contract No. 09-02-92114, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and Funding Program for Innovative R&D on S&T (FIRST). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85800 Serial 1066
Permanent link to this record