toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Huijben, M.; Koster, G.; Kruize, M.K.; Wenderich, S.; Verbeeck, J.; Bals, S.; Slooten, E.; Shi, B.; Molegraaf, H.J.A.; Kleibeuker, J.E.; Van Aert, S.; Goedkoop, J.B.; Brinkman, A.; Blank, D.H.A.; Golden, M.S.; Van Tendeloo, G.; Hilgenkamp, H.; Rijnders, G.; pdf  doi
openurl 
  Title Defect engineering in oxide heterostructures by enhanced oxygen surface exchange Type A1 Journal article
  Year (down) 2013 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 23 Issue 42 Pages 5240-5248  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of materials with well-controlled composition and structure improves our understanding of their intrinsic electrical transport properties. Recent developments in atomically controlled growth have been shown to be crucial in enabling the study of new physical phenomena in epitaxial oxide heterostructures. Nevertheless, these phenomena can be influenced by the presence of defects that act as extrinsic sources of both doping and impurity scattering. Control over the nature and density of such defects is therefore necessary to fully understand the intrinsic materials properties and exploit them in future device technologies. Here, it is shown that incorporation of a strontium copper oxide nano-layer strongly reduces the impurity scattering at conducting interfaces in oxide LaAlO3SrTiO3(001) heterostructures, opening the door to high carrier mobility materials. It is proposed that this remote cuprate layer facilitates enhanced suppression of oxygen defects by reducing the kinetic barrier for oxygen exchange in the hetero-interfacial film system. This design concept of controlled defect engineering can be of significant importance in applications in which enhanced oxygen surface exchange plays a crucial role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000327480900003 Publication Date 2013-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 87 Open Access  
  Notes Countatoms; Vortex; Fwo; Ifox ECASJO_; Approved Most recent IF: 12.124; 2013 IF: 10.439  
  Call Number UA @ lucian @ c:irua:109273UA @ admin @ c:irua:109273 Serial 615  
Permanent link to this record
 

 
Author Egoavil, R.; Tan, H.; Verbeeck, J.; Bals, S.; Smith, B.; Kuiper, B.; Rijnders, G.; Koster, G.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic scale investigation of a PbTiO3/SrRuO3/DyScO3 heterostructure Type A1 Journal article
  Year (down) 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 102 Issue 22 Pages 223106-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An epitaxial PbTiO3 thin film grown on self-organized crystalline SrRuO3 nanowires deposited on a DyScO3 substrate with ordered DyO and ScO2 chemical terminations is investigated by transmission electron microscopy. In this PbTiO3/SrRuO3/DyScO3 heterostructure, the SrRuO3 nanowires are assumed to grow on only one type of substrate termination. Here, we report on the structure, morphology, and chemical composition analysis of this heterostructure. Electron energy loss spectroscopy reveals the exact termination sequence in this complex structure. The energy loss near-edge structure of the Ti-L-2,L-3, Sc-L-2,L-3, and O K edges shows intrinsic interfacial electronic reconstruction. Furthermore, PbTiO3 domain walls are observed to start at the end of the nanowires resulting in atomic steps on the film surface. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000320621600070 Publication Date 2013-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Ifox; Esteem2; Countatoms; Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:109606UA @ admin @ c:irua:109606 Serial 185  
Permanent link to this record
 

 
Author Boschker, H.; Verbeeck, J.; Egoavil, R.; Bals, S.; Van Tendeloo, G.; Huijben, M.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G. pdf  doi
openurl 
  Title Preventing the reconstruction of the polar discontinuity at oxide heterointerfaces Type A1 Journal article
  Year (down) 2012 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 22 Issue 11 Pages 2235-2240  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Perovskite oxide heteroepitaxy receives much attention because of the possibility to combine the diverse functionalities of perovskite oxide building blocks. A general boundary condition for the epitaxy is the presence of polar discontinuities at heterointerfaces. These polar discontinuities result in reconstructions, often creating new functionalities at the interface. However, for a significant number of materials these reconstructions are unwanted as they alter the intrinsic materials properties at the interface. Therefore, a strategy to eliminate this reconstruction of the polar discontinuity at the interfaces is required. We show that the use of compositional interface engineering can prevent the reconstruction at the La0.67Sr0.33MnO3/SrTiO3 (LSMO/STO) interface. The polar discontinuity at this interface can be removed by the insertion of a single La0.33Sr0.67O layer, resulting in improved interface magnetization and electrical conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000304749600002 Publication Date 2012-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 72 Open Access  
  Notes We wish to acknowledge the financial support of the Dutch Science Foundation (NWO) and the Dutch Nanotechnology program NanoNed. S. B. acknowledges the financial support from the European Union under the Framework 6 program under a contract for an Integrated Infrastructure Initiative. Reference 026019 ESTEEM. J. V. and G. V. T. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC grant N246791 – COUNTATOMS. R. E. acknowledges funding by the European Union Council under the 7th Framework Program (FP7) grant NNMP3-LA-2010-246102 IFOX. We thank Sandra Van Aert for stimulating discussions. Approved Most recent IF: 12.124; 2012 IF: 9.765  
  Call Number UA @ lucian @ c:irua:98907UA @ admin @ c:irua:98907 Serial 2712  
Permanent link to this record
 

 
Author Boschker, H.; Huijben, M.; Vailinois, A.; Verbeeck, J.; Van Aert, S.; Luysberg, M.; Bals, S.; Van Tendeloo, G.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G. pdf  doi
openurl 
  Title Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics Type A1 Journal article
  Year (down) 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 44 Issue 20 Pages 205001-205001,9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper, an overview of the fabrication and properties of high-quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high-quality LSMO film combines a smooth surface morphology with a large magnetization and a small residual resistivity, while avoiding precipitates and surface segregation. In the literature, typically only a few of these issues are adressed. We therefore present a thorough characterization of our films, which were grown by pulsed laser deposition. The films were characterized with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, magnetization and transport measurements, x-ray photoelectron spectroscopy and scanning transmission electron microscopy. The films have a saturation magnetization of 4.0 µB/Mn, a Curie temperature of 350 K and a residual resistivity of 60 µΩ cm. These results indicate that high-quality films, combining both large magnetization and small residual resistivity, were realized. A comparison between different samples presented in the literature shows that focussing on a single property is insufficient for the optimization of the deposition process. For high-quality films, all properties have to be adressed. For LSMO devices, the thin-film quality is crucial for the device performance. Therefore, this research is important for the application of LSMO in devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000290150900001 Publication Date 2011-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 99 Open Access  
  Notes This research was financially supported by the Dutch Science Foundation, by NanoNed, a nanotechnology program of the Dutch Ministry of Economic Affairs, and by the NanOxide program of the European Science Foundation. This work is supported in part by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. Approved Most recent IF: 2.588; 2011 IF: 2.544  
  Call Number UA @ lucian @ c:irua:89557UA @ admin @ c:irua:89557 Serial 2491  
Permanent link to this record
 

 
Author Koster, G.; Verbist, K.; Rijnders, G.; Rogalla, H.; Van Tendeloo, G.; Blank, D.H.A. pdf  doi
openurl 
  Title Structure and properties of (Sr,Ca)CuO2-BaCuO2 superlattices grown by pulsed laser interval deposition Type A1 Journal article
  Year (down) 2001 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 353 Issue 3-4 Pages 167-183  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the preparation of CuBa(2)(Sr(x)Ca(1-x))(n)Cu(n-1)O(y) compounds by fabrication of (Ba,Sr,Ca)CuO(2) superlattices with pulsed laser deposition (PLD). A technique called interval deposition is used to suppress multi-level or island growth resulting in high-quality superlattice structures. Both, the applicability of PLD to atomic engineering as well as the fabrication of artificial superconductors is demonstrated. The (Sr,Ca)CuO(2)-BaCuO(2) superlattices are characterized by X-ray diffraction, high-resolution electron microscopy (HREM) and selected area electron diffraction. The superlattice period has been deduced from electron diffraction patterns and XRD measurements. For Sr containing films, the best growth behavior is observed and films with the highest degree of crystallinity are obtained, whereas superconductivity is only found in less crystalline, Ca containing films. Under some deposition conditions and depending on the amount of Ba containing layers in the superlattice, it was observed that the BaCuO(2) material is converted to Ba(2)CuO(4-delta). Image simulations to interpret the HREM contrast are performed. (C) 2001 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000168861100003 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.404; 2001 IF: 0.806  
  Call Number UA @ lucian @ c:irua:103417 Serial 3293  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: