|   | 
Details
   web
Records
Author Le Noir de Carlan, C.; Kaarlejarvi, E.; De Tender, C.; Heinecke, T.; Eskelinen, A.; Verbruggen, E.
Title Shifts in mycorrhizal types of fungi and plants in response to fertilisation, warming and herbivory in a tundra grassland Type A1 Journal article
Year (down) 2024 Publication New phytologist Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Climate warming is severely affecting high-latitude regions. In the Arctic tundra, it may lead to enhanced soil nutrient availability and interact with simultaneous changes in grazing pressure. It is presently unknown how these concurrently occurring global change drivers affect the root-associated fungal communities, particularly mycorrhizal fungi, and whether changes coincide with shifts in plant mycorrhizal types. We investigated changes in root-associated fungal communities and mycorrhizal types of the plant community in a 10-yr factorial experiment with warming, fertilisation and grazing exclusion in a Finnish tundra grassland. The strongest determinant of the root-associated fungal community was fertilisation, which consistently increased potential plant pathogen abundance and had contrasting effects on the different mycorrhizal fungal types, contingent on other treatments. Plant mycorrhizal types went through pronounced shifts, with warming favouring ecto- and ericoid mycorrhiza but not under fertilisation and grazing exclusion. Combination of all treatments resulted in dominance by arbuscular mycorrhizal plants. However, shifts in plant mycorrhizal types vs fungi were mostly but not always aligned in their magnitude and direction. Our results show that our ability to predict shifts in symbiotic and antagonistic fungal communities depend on simultaneous consideration of multiple global change factors that jointly alter plant and fungal communities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001220955000001 Publication Date 2024-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-646x ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:206016 Serial 9228
Permanent link to this record
 

 
Author Fang, C.; Verbrigghe, N.; Sigurdsson, B.D.D.; Ostonen, I.; Leblans, N.I.W.; Maranon-Jimenez, S.; Fuchslueger, L.; Sigurosson, P.; Meeran, K.; Portillo-Estrada, M.; Verbruggen, E.; Richter, A.; Sardans, J.; Penuelas, J.; Bahn, M.; Vicca, S.; Janssens, I.A.
Title Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation Type A1 Journal article
Year (down) 2023 Publication New phytologist Abbreviated Journal
Volume 240 Issue 2 Pages 565-576
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3 degrees C and +7.9 degrees C) on below and aboveground plant biomass stocks and production in a subarctic grassland. Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root-shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area. These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001043561400001 Publication Date 2023-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-646x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:198443 Serial 9199
Permanent link to this record