toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Le Noir de Carlan, C.; Kaarlejarvi, E.; De Tender, C.; Heinecke, T.; Eskelinen, A.; Verbruggen, E. pdf  doi
openurl 
  Title Shifts in mycorrhizal types of fungi and plants in response to fertilisation, warming and herbivory in a tundra grassland Type A1 Journal article
  Year (down) 2024 Publication New phytologist Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract Climate warming is severely affecting high-latitude regions. In the Arctic tundra, it may lead to enhanced soil nutrient availability and interact with simultaneous changes in grazing pressure. It is presently unknown how these concurrently occurring global change drivers affect the root-associated fungal communities, particularly mycorrhizal fungi, and whether changes coincide with shifts in plant mycorrhizal types. We investigated changes in root-associated fungal communities and mycorrhizal types of the plant community in a 10-yr factorial experiment with warming, fertilisation and grazing exclusion in a Finnish tundra grassland. The strongest determinant of the root-associated fungal community was fertilisation, which consistently increased potential plant pathogen abundance and had contrasting effects on the different mycorrhizal fungal types, contingent on other treatments. Plant mycorrhizal types went through pronounced shifts, with warming favouring ecto- and ericoid mycorrhiza but not under fertilisation and grazing exclusion. Combination of all treatments resulted in dominance by arbuscular mycorrhizal plants. However, shifts in plant mycorrhizal types vs fungi were mostly but not always aligned in their magnitude and direction. Our results show that our ability to predict shifts in symbiotic and antagonistic fungal communities depend on simultaneous consideration of multiple global change factors that jointly alter plant and fungal communities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001220955000001 Publication Date 2024-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.4 Times cited Open Access  
  Notes Approved Most recent IF: 9.4; 2024 IF: 7.33  
  Call Number UA @ admin @ c:irua:206016 Serial 9228  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: