toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Jeong, Y.; Han, B.; Tamayo, A.; Claes, N.; Bals, S.; Samorì, P. pdf  url
doi  openurl
  Title Defect Engineering of MoTe2via Thiol Treatment for Type III van der Waals Heterojunction Phototransistor Type A1 Journal article
  Year (down) 2024 Publication ACS nano Abbreviated Journal ACS Nano  
  Volume 18 Issue 28 Pages 18334-18343  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Molybdenum ditelluride (MoTe2) nanosheets have displayed intriguing physicochemical properties and opto-electric characteristics as a result of their tunable and

small band gap (Eg ∼ 1 eV), facilitating concurrent electron and hole transport. Despite the numerous efforts devoted to the development of p-type MoTe2 field-effect transistors (FETs), the presence of tellurium (Te) point vacancies has caused serious reliability issues. Here, we overcome this major

limitation by treating the MoTe2 surface with thiolated molecules to heal Te vacancies. Comprehensive materials and electrical characterizations provided unambiguous evidence for the efficient chemisorption of butanethiol. Our thiol-treated MoTe2 FET exhibited a 10-fold increase in hole current and a positive threshold voltage shift of 25 V, indicative of efficient hole carrier doping. We demonstrated that our powerful molecular engineering strategy can be extended to the controlled formation of van der Waals heterostructures by developing an n-SnS2/thiol-MoTe2 junction FET (thiol-JFET). Notably, the thiol-JFET exhibited a significant negative photoresponse with a responsivity of 50 A W−1 and a fast response time of 80 ms based on band-to-band tunneling. More interestingly, the

thiol-JFET displayed a gate tunable trimodal photodetection comprising two photoactive modes (positive and negative photoresponse) and one photoinactive mode. These findings underscore the potential of molecular engineering approaches in

enhancing the performance and functionality of MoTe2-based nanodevices as key components in advanced 2D-based optoelectronics.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001264 Publication Date 2024-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes The authors acknowledge the financial support from the FLAG-ERA project MULTISPIN funded by the Agence Nationale de la Recherche (ANR-21-GRF1-0003-01). We also acknowledge funding from the European Union’s Horizon Europe research and innovation programme through the project HYPERSONIC (GA-101129613) and the ERC project SUPRA2DMAT (GA-833707) as well as the ANR through the Interdisciplinary Thematic Institute SysChem via the IdEx Unistra (ANR-10-IDEX-0002) within the program Investissement d’Avenir, the Foundation Jean-Marie Lehn and the Institut Universitaire de France (IUF). This work was also supported by National Research Foundation of Korea (NRF) grant funded by Korea government (MSIT) (No. RS-2023- 00251360). Approved Most recent IF: 17.1; 2024 IF: 13.942  
  Call Number EMAT @ emat @c:irua:207002 Serial 9252  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: