|
Record |
Links |
|
Author |
Jeong, Y.; Han, B.; Tamayo, A.; Claes, N.; Bals, S.; Samorì, P. |
|
|
Title |
Defect Engineering of MoTe2via Thiol Treatment for Type III van der Waals Heterojunction Phototransistor |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
ACS nano |
Abbreviated Journal |
ACS Nano |
|
|
Volume |
18 |
Issue |
28 |
Pages |
18334-18343 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Molybdenum ditelluride (MoTe2) nanosheets have displayed intriguing physicochemical properties and opto-electric characteristics as a result of their tunable and
small band gap (Eg ∼ 1 eV), facilitating concurrent electron and hole transport. Despite the numerous efforts devoted to the development of p-type MoTe2 field-effect transistors (FETs), the presence of tellurium (Te) point vacancies has caused serious reliability issues. Here, we overcome this major
limitation by treating the MoTe2 surface with thiolated molecules to heal Te vacancies. Comprehensive materials and electrical characterizations provided unambiguous evidence for the efficient chemisorption of butanethiol. Our thiol-treated MoTe2 FET exhibited a 10-fold increase in hole current and a positive threshold voltage shift of 25 V, indicative of efficient hole carrier doping. We demonstrated that our powerful molecular engineering strategy can be extended to the controlled formation of van der Waals heterostructures by developing an n-SnS2/thiol-MoTe2 junction FET (thiol-JFET). Notably, the thiol-JFET exhibited a significant negative photoresponse with a responsivity of 50 A W−1 and a fast response time of 80 ms based on band-to-band tunneling. More interestingly, the
thiol-JFET displayed a gate tunable trimodal photodetection comprising two photoactive modes (positive and negative photoresponse) and one photoinactive mode. These findings underscore the potential of molecular engineering approaches in
enhancing the performance and functionality of MoTe2-based nanodevices as key components in advanced 2D-based optoelectronics. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001264 |
Publication Date |
2024-07-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1936-0851 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles; WoS full record |
|
|
Impact Factor |
17.1 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
The authors acknowledge the financial support from the FLAG-ERA project MULTISPIN funded by the Agence Nationale de la Recherche (ANR-21-GRF1-0003-01). We also acknowledge funding from the European Union’s Horizon Europe research and innovation programme through the project HYPERSONIC (GA-101129613) and the ERC project SUPRA2DMAT (GA-833707) as well as the ANR through the Interdisciplinary Thematic Institute SysChem via the IdEx Unistra (ANR-10-IDEX-0002) within the program Investissement d’Avenir, the Foundation Jean-Marie Lehn and the Institut Universitaire de France (IUF). This work was also supported by National Research Foundation of Korea (NRF) grant funded by Korea government (MSIT) (No. RS-2023- 00251360). |
Approved |
Most recent IF: 17.1; 2024 IF: 13.942 |
|
|
Call Number |
EMAT @ emat @c:irua:207002 |
Serial |
9252 |
|
Permanent link to this record |