|
Abstract |
In a world increasingly reliant on alternative energy sources, the quest for efficient and secure storage solutions is paramount. This doctoral thesis explores the exciting potential of a familiar material – water – to act as a vault for next-generation energy sources like hydrogen (H2) and methane (CH4). Nature offers a solution in the form of clathrate hydrates, fascinating cage-like structures formed from water molecules that can trap these gas molecules within their framework. This research investigates on improving the formation kinetics and gas storage capabilities of clathrate hydrates utilizing porous materials and the interstitial space between non-porous materials to augment the contact between gas and water thereby catalysing the growth of hydrates and unlocking their full potential as efficient and secure energy storage reservoirs. A key outcome of this research is the formulation of an empirical correlation, offering predictive insights into CH4 hydrate phase equilibrium conditions. Innovative approaches utilizing thermally conductive beads have yielded substantial enhancements in CH4 uptake. Furthermore, the identification of optimal water content within porous materials showcases a pathway to maximize CH4 storage capacity and hydrate growth kinetics. In the domain of hydrogen storage, attention is also directed towards unstirred systems, where the integration of functionalized porous materials has demonstrated a significant improvement in the rate of hydrate formation and the overall H2 storage capacity. A noteworthy achievement of this research lies in the successful storage of H2 within confined CH4 hydrates through a gas exchange process and the preliminary results show the potential for safer and more sustainable method for H2 storage at mild thermodynamic conditions, offering promising prospects for future energy systems. |
|