|
Abstract |
Nowadays, X-ray fluorescence spectrometry (XRF) is a well-established analytical technique for qualitative and quantitative elemental analysis (sometimes from Be to U) of a wide variety of samples. In particular, the truly multi-element character, acceptable speed and economy, ease of automation and the possibility to directly analyse solid samples are the most important features among the many that have made it a very mature analytical tool for routine quality controls in many industries, as well as for analytical support for the research laboratory.e recent technological advances, including the design of low-power micro-focus tubes and the novel X-ray optics and detectors have made it possible to extend XRF to the determination of low-Z elements and to obtain 2D or 3D information on a micrometre-scale. Furthermore, the recent development and commercialisation of benchtop and portable instrumentation, that offer extreme simplicity of operation in a low-cost design, have promoted even more the approach of XRF for many analytical problems.is article highlights this state-of-the art technique with regards to currently available XRF instrumentation on the market as well as recent applications in environmental and industrial fields. |
|