|
Abstract |
A fast (10 min), non-destructive simultaneous determination of silicon and phosphorus in cast iron and steel by 14 MeV neutron activation was developed. The 1.78 MeV28Al activity (T=2.24 min) induced by the reaction28Si(n, p)28Al is counted on a NaI(Tl) detector. Two measurements are made to correct for the 1.81 MeV56Mn activity (T=2.58 hr) from the iron matrix. However,28Al is also produced via31P(n, α)28Al. By (n, 2n) reaction, phosphorus yields also30P (T=2.6 min), the 0.511 MeV annihilation radiation of which is counted by two opposite NaI(Tl) detectors in coincidence. Again, two successive coincidence measurements are carried out in order to take into account the53Fe activity (β+; T=8.9 min) from54Fe(n, 2n)53Fe. The28Al measurement is appropriately corrected via the computed phosphorus content. An oxygen flux monitor was used to normalize to the same flux. Nuclear interferences have been examined. Special attention has been paid to the presence of copper. The standard deviation for phosphorus being as high as ca. 0.09% P for a single determination, this technique can only be practical as an independent phosphorus analysis for high phosphorus cast irons. The precision on the28Al measurement is 5% relative for 0.2% Si and 2.5% above 1% Si. |
|