|
Abstract |
There is a type of filament that forms dosed contours encircling regions of one polarity of magnetic field, while the surrounding region has the opposite polarity One distribution of ring-filaments has sizes 2R = 40,000 to 160,000 km with the maximum around 100,000 km; the other distribution (with filaments and filament channels) has bigger sizes, with a maximum around 300,000 km. At low and mid latitudes the radial component B-rs (radial for the Sun) in the region outlined by filaments varies from 50 to 100 gauss, while the longitudinal component B-phi varies from 10 to 30 gauss. The total current inside the filament is 10(10) – 10(11) A, the ratio R/a approximate to 5 to 10, the magnetic flux crossing the surface is approximate to 10(21) – 10(22) MX; th, magnetic energy is approximate to 10(29) – 10(31) erg. Polar ring-filaments at latitudes 60 degrees-80 degrees are related to the polar magnetic field reversal and the quasi-flare processes at the poles during the field reversal. Correlation between B-rs and B-phi for the polar filament bands cannot be satisfactorily explained. A theoretical model using the conservation laws is used to study the relations between the various fields, currents, etc, of shrinking polar ring-filaments and their evolution. According to this theory ring-filaments should rise higher above the photosphere when shrinking. However, observations show that the height lowers. Presumably the discrepancy is due to the lack of dissipation in the model. |
|