|
Abstract |
A variety of samples, collected from different historical buildings and monuments throughout Belgium, were thoroughly studied, using several trace- and micro-analysis techniques. Thin sections of stones and mortar joints were characterized by means of electron probe X-ray microanalysis (EPXMA). The morphological appearance of the surface weathering crust and the possible presence of non-innate particles in the crust were elucidated using petrographical and electron microscopy. Quantitative characterization of the total chemical composition of the crust surface layer and underlying layer was performed by energy-dispersive X-ray fluorescence, and by ion chromatography and atomic absorption spectrometry for the leachable components. Special attention was also paid to the chemical composition of rain and air at the particular sampling sites. The element distribution in the transition zone between the weathering crust and the original stone material was found to vary greatly amongst the different samples analyzed. Detailed EPXMA measurements on pieces of the weathering crust showed remarkable differences in morphology and composition between the surface and the underlying layer, and provided information about the presence of fly-ash and soil dust particles in the crust. Except for crusts from the city of Brussels, which were all very high in sulphate, the samples appeared to contain very variable sulphate contents; very local micro-climate and environmental conditions at a particular site are more important in determining the weathering condition of the building stones than the local air pollution situation. Bulk analytical characterization further showed, in all the crust samples studied, a very small contribution of nitrogen- and chlorine-containing weathering products, in contrast to sulphur-containing weathering salts. |
|