toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author de Hartog, J.J.; Lanki, T.; Timonen, K.L.; Hoek, G.; Janssen, N.A.H.; Ibald-Mulli, A.; Peters, A.; Heinrich, J.; Tarkainen, T.H.; Van Grieken, R.; van Wijnen, J.H.; Brunekreef, B.; Pekkanen, J. url  doi
openurl 
  Title Associations between PM2.5 and heart rate variability are modified by particle composition and beta-blocker use in patients with coronary heart disease Type A1 Journal article
  Year (down) 2009 Publication Environmental health perspectives Abbreviated Journal  
  Volume 117 Issue 1 Pages 105-111  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Background: It has been hypothesized that ambient particulate air pollution is able to modify the autonomic nervous control of the heart, measured as heart rate variability (HRV) . Previously we reported heterogeneous associations between particulate matter with aerodynamic diameter < 2.5 µm (PM2.5) and HRV across three study centers. Objective: We evaluated whether exposure misclassification, effect modification by medication, or differences in particle composition could explain the inconsistencies. Methods: Subjects with coronary heart disease visited clinics biweekly in Amsterdam, the Netherlands ; Erfurt, Germany ; and Helsinki, Finland for 68 months. The standard deviation (SD) of NN intervals on an electrocardiogram (ECG ; SDNN) and high frequency (HF) power of HRV was measured with ambulatory ECG during paced breathing. Outdoor levels of PM2.5 were measured at a central site. In Amsterdam and Helsinki, indoor and personal PM2.5 were measured during the 24 hr preceding the clinic visit. PM2.5 was apportioned between sources using principal component analyses. We analyzed associations of indoor/personal PM2.5, elements of PM2.5, and source-specific PM2.5 with HRV using linear regression. Results: Indoor and personal PM2.5 were not associated with HRV. Increased outdoor PM2.5 was associated with decreased SDNN and HF at lags of 2 and 3 days only among persons not using beta-blocker medication. Traffic-related PM2.5 was associated with decreased SDNN, and long-range transported PM2.5 with decreased SDNN and HF, most strongly among persons not using beta blockers. Indicators for PM2.5 from traffic and long-range transport were also associated with decreased HRV. Conclusions: Our results suggest that differences in the composition of particles, beta-blocker use, and obesity of study subjects may explain some inconsistencies among previous studies on HRV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000262483900037 Publication Date 2008-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-6765; 1552-9924 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:72924 Serial 7510  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: