|
Record |
Links |
|
Author |
Vohra, A.; Khanam, A.; Slotte, J.; Makkonen, I.; Pourtois, G.; Porret, C.; Loo, R.; Vandervorst, W. |
|
|
Title |
Heavily phosphorus doped germanium : strong interaction of phosphorus with vacancies and impact of tin alloying on doping activation |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Journal of applied physics |
Abbreviated Journal |
J Appl Phys |
|
|
Volume |
125 |
Issue |
22 |
Pages |
225703 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
We examined the vacancy trapping proficiency of Sn and P atoms in germanium using positron annihilation spectroscopy measurements, sensitive to the open-volume defects. Epitaxial Ge1 xSnx films were grown by chemical vapor deposition with different P concentrations in the 3: 0 1019-1: 5 1020 cm 3 range. We corroborate our findings with first principles simulations. Codoping of Ge with a Sn concentration of up to 9% is not an efficient method to suppress the free vacancy concentration and the formation of larger phosphorus-vacancy complexes. Experimental results confirm an increase in the number of P atoms around the monovacancy with P-doping, leading to dopant deactivation in epitaxial germanium-tin layers with similar Sn content. Vice versa, no impact on the improvement of maximum achieved P activation in Ge with increasing Sn-doping has been observed. Theoretical calculations also confirm that Pn-V (vacancy) complexes are energetically more stable than the corresponding SnmPn-V and Snm-V defect structures with the same number of alien atoms (Sn or P) around the monovacancy. he strong attraction of vacancies to the phosphorus atoms remains the dominant dopant deactivation mechanism in Ge as well as in Ge1 xSnx. Published under license by AIP Publishing. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000471698600044 |
Publication Date |
2019-06-10 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-8979; 1089-7550 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.068 |
Times cited |
1 |
Open Access |
|
|
|
Notes |
|
Approved |
Most recent IF: 2.068 |
|
|
Call Number |
UA @ admin @ c:irua:161333 |
Serial |
6300 |
|
Permanent link to this record |