toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verbeelen, T.; Fernandez, C.A.; Nguyen, T.H.; Gupta, S.; Aarts, R.; Tabury, K.; Leroy, B.; Wattiez, R.; Vlaeminck, S.E.; Leys, N.; Ganigué, R.; Mastroleo, F. url  doi
openurl 
  Title Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity Type A1 Journal article
  Year 2024 Publication NPJ microgravity Abbreviated Journal  
  Volume 10 Issue 1 Pages 3-19  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001140007100001 Publication Date 2024-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2373-8065 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202285 Serial (down) 9113  
Permanent link to this record
 

 
Author Van Echelpoel, R.; De Wael, K. doi  openurl
  Title Voltammetric drug testing makes sense at the border Type A1 Journal article
  Year 2024 Publication Nature Reviews Chemistry Abbreviated Journal  
  Volume Issue Pages 1-2  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The European BorderSens project leverages voltammetric sensors, developed with end-users' input, to rapidly and accurately detect illicit drugs. By embracing practicalities and validation, this technology has the potential to combat the illicit drug problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142000900001 Publication Date 2024-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3358 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202646 Serial (down) 9112  
Permanent link to this record
 

 
Author Singh, A.; Yuan, B.; Rahman, M.H.; Yang, H.; De, A.; Park, J.Y.; Zhang, S.; Huang, L.; Mannodi-Kanakkithodi, A.; Pennycook, T.J.; Dou, L. pdf  doi
openurl 
  Title Two-dimensional halide Pb-perovskite-double perovskite epitaxial heterostructures Type A1 Journal article
  Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal  
  Volume 145 Issue 36 Pages 19885-19893  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial heterostructures of two-dimensional (2D) halide perovskites offer a new platform for studying intriguing structural, optical, and electronic properties. However, difficulties with the stability of Pb- and Sn-based heterostructures have repeatedly slowed the progress. Recently, Pb-free halide double perovskites are gaining a lot of attention due to their superior stability and greater chemical diversity, but they have not been successfully incorporated into epitaxial heterostructures for further investigation. Here, we report epitaxial core-shell heterostructures via growing Pb-free double perovskites (involving combinations of Ag(I)-Bi(III), Ag-Sb, Ag-In, Na-Bi, Na-Sb, and Na-In) around Pb perovskite 2D crystals. Distinct from Pb-Pb and Pb-Sn perovskite heterostructures, growths of the Pb-free shell at 45 degrees on the (100) surface of the lead perovskite core are observed in all Pb-free cases. The in-depth structural analysis carried out with electron diffraction unequivocally demonstrates the growth of the Pb-free shell along the [110] direction of the Pb perovskite, which is likely due to the relatively lower surface energy of the (110) surface. Furthermore, an investigation of anionic interdiffusion across heterostructure interfaces under the influence of heat was carried out. Interestingly, halide anion diffusion in the Pb-free 2D perovskites is found to be significantly suppressed as compared to Pb-based 2D perovskites. The great structural tunability and excellent stability of Pb-free perovskite heterostructures may find uses in electronic and optoelectronic devices in the near future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001060980300001 Publication Date 2023-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200342 Serial (down) 9111  
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A. doi  openurl
  Title Tuning of exciton type by environmental screening Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 11 Pages 115303-115308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077758300002 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200356 Serial (down) 9110  
Permanent link to this record
 

 
Author Vermeulen, B.B.; Raymenants, E.; Pham, V.T.; Pizzini, S.; Sorée, B.; Wostyn, K.; Couet, S.; Nguyen, V.D.; Temst, K. url  doi
openurl 
  Title Towards fully electrically controlled domain-wall logic Type A1 Journal article
  Year 2024 Publication AIP advances Abbreviated Journal  
  Volume 14 Issue 2 Pages 025030-25035  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Utilizing magnetic tunnel junctions (MTJs) for write/read and fast spin-orbit-torque (SOT)-driven domain-wall (DW) motion for propagation, enables non-volatile logic and majority operations, representing a breakthrough in the implementation of nanoscale DW logic devices. Recently, current-driven DW logic gates have been demonstrated via magnetic imaging, where the Dzyaloshinskii-Moriya interaction (DMI) induces chiral coupling between perpendicular magnetic anisotropy (PMA) regions via an in-plane (IP) oriented region. However, full electrical operation of nanoscale DW logic requires electrical write/read operations and a method to pattern PMA and IP regions compatible with the fabrication of PMA MTJs. Here, we study the use of a Hybrid Free Layer (HFL) concept to combine an MTJ stack with DW motion materials, and He+ ion irradiation to convert the stack from PMA to IP. First, we investigate the free layer thickness dependence of 100-nm diameter HFL-MTJ devices and find an optimal CoFeB thickness, from 7 to 10 angstrom, providing high tunneling magnetoresistance (TMR) readout and efficient spin-transfer torque (STT) writing. We then show that high DMI materials, like Pt/Co, can be integrated into an MTJ stack via interlayer exchange coupling with the CoFeB free layer. In this design, DMI values suitable for SOT-driven DW motion are measured by asymmetric bubble expansion. Finally, we demonstrate that He+ irradiation reliably converts the coupled free layers from PMA to IP. These findings offer a path toward the integration of fully electrically controlled DW logic circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001163573400005 Publication Date 2024-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203823 Serial (down) 9109  
Permanent link to this record
 

 
Author Biondo, O. openurl 
  Title Towards a fundamental understanding of energy-efficient, plasma-based CO<sub>2</sub> conversion Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 221 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based CO2 conversion is worldwide gaining increasing interest. The aim of this work is to find potential pathways to improve the energy efficiency of plasma-based CO2 conversion beyond what is feasible for thermal chemistry. To do so, we use a combination of modeling and experiments to better understand the underlying mechanisms of CO2 conversion, ranging from non-thermal to thermal equilibrium conditions. Zero-dimensional (0D) chemical kinetics modelling, describing the detailed plasma chemistry, is developed to explore the vibrational kinetics of CO2, as the latter is known to play a crucial role in the energy efficient CO2 conversion. The 0D model is successfully validated against pulsed CO2 glow discharge experiments, enabling the reconstruction of the complex dynamics underlying gas heating in a pure CO2 discharge, paving the way towards the study of gas heating in more complex gas mixtures, such as CO2 plasmas with high dissociation degrees. Energy-efficient, plasma-based CO2 conversion can also be obtained upon the addition of a reactive carbon bed in the post-discharge region. The reaction between solid carbon and O2 to form CO allows to both reduce the separation costs and increase the selectivity towards CO, thus, increasing the energy efficiency of the overall conversion process. In this regard, a novel 0D model to infer the mechanism underlying the performance of the carbon bed over time is developed. The model outcome indicates that gas temperature and oxygen complexes formed at the surface of solid carbon play a fundamental and interdependent role. These findings open the way towards further optimization of the coupling between plasma and carbon bed. Experimentally, it has been demonstrated that “warm” plasmas (e.g. microwave or gliding arc plasmas) can yield very high energy efficiency for CO2 conversion, but typically only at reduced pressure. For industrial application, it will be important to realize such good energy efficiency at atmospheric pressure as well. However, recent experiments illustrate that the microwave plasma at atmospheric pressure is too close to thermal conditions to achieve a high energy efficiency. Hence, we use a comprehensive set of advanced diagnostics to characterize the plasma and the reactor performance, focusing on CO2 and CO2/CH4 microwave discharges. The results lead to a deeper understanding of the mechanism of power concentration with increasing pressure, typical of plasmas in most gases, which is of great importance for model validation and understanding of reactor performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:197213 Serial (down) 9108  
Permanent link to this record
 

 
Author Bathula, G.; Rana, S.; Bandalla, S.; Dosarapu, V.; Mavurapu, S.; Rajeevan, V.V.A.; Sharma, B.; Jonnalagadda, S.B.; Baithy, M.; Vasam, C.S. url  doi
openurl 
  Title The role of WOx and dopants (ZrO₂ and SiO₂) on CeO₂-based nanostructure catalysts in the selective oxidation of benzyl alcohol to benzaldehyde under ambient conditions Type A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue 51 Pages 36242-36253  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Herein, the efficacy of WOx-promoted CeO2-SiO2 and CeO2-ZrO2 mixed oxide catalysts in the solvent-free selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as an oxidant is reported. We evaluated the effects of the oxidant and catalyst concentration, reaction duration, and temperature on the reaction with an aim to optimize the reaction conditions. The as-prepared CeO2, CeO2-ZrO2, CeO2-SiO2, WOx/CeO2, WOx/CeO2-ZrO2, and WOx/CeO2-SiO2 catalysts were characterized by X-ray diffraction (XRD), N-2 adsorption-desorption, Raman spectroscopy, temperature-programmed desorption of ammonia (TPD-NH3), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). These characterisation results indicated that the WOx/CeO2-SiO2 catalyst possessed improved physicochemical (i.e., structural, textural, and acidic) properties owing to the strong interactivity between WOx and CeO2-SiO2. A higher number of Ce3+ ions (I-u '''/I-Total) were created with the WOx/CeO2-SiO2 catalyst than those with the other catalysts in this work, indicating the generation of a high number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst exhibited a high conversion of benzyl alcohol (>99%) and a high selectivity (100%) toward benzaldehyde compared to the other promoted catalysts (i.e., WOx/CeO2 and WOx/CeO2-ZrO2), which is attributed to the smaller particle size of the WOx and CeO2 and their high specific surface area, more significant number of acidic sites, and superior number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst could be quickly recovered and utilized at least five times without suffering any appreciable activity loss.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001123102800001 Publication Date 2023-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202115 Serial (down) 9107  
Permanent link to this record
 

 
Author Mehmonov, K.; Ergasheva, A.; Yusupov, M.; Khalilov, U. url  doi
openurl 
  Title The role of carbon monoxide in the catalytic synthesis of endohedral carbyne Type A1 Journal article
  Year 2023 Publication Journal of applied physics Abbreviated Journal  
  Volume 134 Issue 14 Pages 144303-144307  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The unique physical properties of carbyne, a novel carbon nanostructure, have attracted considerable interest in modern nanotechnology. While carbyne synthesis has been accomplished successfully using diverse techniques, the underlying mechanisms governing the carbon monoxide-dependent catalytic synthesis of endohedral carbyne remain poorly understood. In this simulation-based study, we investigate the synthesis of endohedral carbyne from carbon and carbon monoxide radicals in the presence of a nickel catalyst inside double-walled carbon nanotubes with a (5,5)@(10,10) structure. The outcome of our investigation demonstrates that the incorporation of the carbon atom within the Ni-n@(5,5)@(10,10) model system initiates the formation of an elongated carbon chain. In contrast, upon the introduction of carbon monoxide radicals, the growth of the carbyne chain is inhibited as a result of the oxidation of endohedral nickel clusters by oxygen atoms after the initial steps of nucleation. Our findings align with prior theoretical, simulation, and experimental investigations, reinforcing their consistency and providing valuable insights into the synthesis of carbyne-based nanodevices that hold promising potential for future advancements in nanotechnology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001083993400003 Publication Date 2023-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201233 Serial (down) 9106  
Permanent link to this record
 

 
Author Sargin, G.O.; Sarikurt, S.; Sevincli, H.; Sevik, C. pdf  url
doi  openurl
  Title The peculiar potential of transition metal dichalcogenides for thermoelectric applications : a perspective on future computational research Type A1 Journal article
  Year 2023 Publication Journal of applied physics Abbreviated Journal  
  Volume 133 Issue 15 Pages 150902-150937  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The peculiar potential transition metal dichalcogenides in regard to sensor and device applications have been exhibited by both experimental and theoretical studies. The use of these materials, thermodynamically stable even at elevated temperatures, particularly in nano- and optoelectronic technology, is about to come true. On the other hand, the distinct electronic and thermal transport properties possessing unique coherency, which may result in higher thermoelectric efficiency, have also been reported. However, exploiting this potential in terms of power generation and cooling applications requires a deeper understanding of these materials in this regard. This perspective study, concentrated with this intention, summarizes thermoelectric research based on transition metal dichalcogenides from a broad perspective and also provides a general evaluation of future theoretical investigations inevitable to shed more light on the physics of electronic and thermal transport in these materials and to lead future experimental research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001079329000001 Publication Date 2023-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200351 Serial (down) 9105  
Permanent link to this record
 

 
Author Parchomenko, A.; De Smet, S.; Pals, E.; Vanderreydt, I.; Van Opstal, W. url  doi
openurl 
  Title The circular economy potential of reversible bonding in smartphones Type A1 Journal article
  Year 2023 Publication Sustainable Production and Consumption Abbreviated Journal  
  Volume 41 Issue Pages 362-378  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increased use of adhesive bonding in manufacturing is an important barrier to implement circular economy strategies, including repair, refurbishment, and high-quality recycling. The circular economy potential of reversible adhesives that are debondable on demand, however, remains largely unexplored. In this paper we apply an integrated technology-agnostic framework to smartphones to identify and quantify the circular econ-omy potential of reversible bonding. In this framework we combine insights from Life Cycle Assessment, Life Cycle Costing, and Statistical Entropy Analysis. We find that reversible bonding of smartphones can be an enabler for circular strategies and have a considerable positive impact on preserving higher functionality on a product, component, and material level. The major added value of reversible bonding is its potential to replace and update parts, retaining the main environmental hotspot of a smartphone. Firms, however, will not likely switch to this technology, even though bonding and debonding make up only a small fraction of total lifecycle costs. Therefore, policy recommendations include mandatory policies on repairability and public procurement favouring the use of reversible bonding techniques. This would alter incentives in contexts where consumer preferences for lease markets cannot be taken for granted. The evaluation of different debonding scenarios from three distinct per-spectives provides a comprehensive, more reliable, and robust understanding of the trade-offs related to debonding and its potential contribution to the circular economy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001078407500001 Publication Date 2023-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-5509 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200307 Serial (down) 9104  
Permanent link to this record
 

 
Author Xiao, H.; Zhang, Z.; Xu, W.; Wang, Q.; Xiao, Y.; Ding, L.; Huang, J.; Li, H.; He, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Terahertz optoelectronic properties of synthetic single crystal diamond Type A1 Journal article
  Year 2023 Publication Diamond and related materials Abbreviated Journal  
  Volume 139 Issue Pages 110266-110268  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A systematic investigation is undertaken for studying the optoelectronic properties of single crystal diamond (SCD) grown by microwave plasma chemical vapor deposition (MPCVD). It is indicated that, without intentional doping and surface treatment during the sample growth, the terahertz (THz) optical conduction in SCD is mainly affected by surface H-terminations, -OH-, O- and N-based functional groups. By using THz time-domain spectroscopy (TDS), we measure the transmittance, the complex dielectric constant and optical conductivity σ(ω) of SCD. We find that SCD does not show typical semiconductor characteristics in THz regime, where σ(ω) cannot be described rightly by the conventional Drude formula. Via fitting the real and imaginary parts of σ(ω) to the Drude-Smith formula, the ratio of the average carrier density to the effective electron mass γ = ne/m*, the electronic relaxation time τ and the electronic backscattering or localization factor can be determined optically. The temperature dependence of these parameters is examined. From the temperature dependence of γ, a metallic to semiconductor transition is observed at about T = 10 K. The temperature dependence of τ is mainly induced by electron coupling with acoustic-phonons and there is a significant effect of photon-induced electron backscattering or localization in SCD. This work demonstrates that THz TDS is a powerful technique in studying SCD which contains H-, N- and O-based bonds and has low electron density and high dc resistivity. The results obtained from this study can benefit us to gain an in-depth understanding of SCD and may provide new guidance for the application of SCD as electronic, optical and optoelectronic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200920 Serial (down) 9103  
Permanent link to this record
 

 
Author Zaripov, A.A.; Khalilov, U.B.; Ashurov, K.B. pdf  doi
openurl 
  Title Synergism of the initial stage of removal of dielectric materials during electrical erosion processing in electrolytes Type A1 Journal article
  Year 2023 Publication Surface engineering and applied electrochemistry Abbreviated Journal  
  Volume 59 Issue 6 Pages 712-718  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ceramics and composites, many of whose physicochemical properties significantly exceed similar properties of metals and their alloys, are processed qualitatively mainly by the electroerosion method. Despite the existing works, the mechanism of the initial stage of the removal of materials has not yet been identified. For a comprehensive understanding of the mechanism of the removal of dielectrics, a new model is proposed based on the experimental results obtained on an improved electroerosion installation. It was revealed that the initial stage of the removal of a dielectric material consists of three successive stages that are associated with the synergistic effect on the process of the anionic group of electrolytes, plasma flare, and the cavitation shock. This makes it possible to better understand the mechanism of the removal of composite and ceramic materials, which should contribute to ensuring the machinability of those materials and their wide use in promising technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001126070700009 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1068-3755; 1934-8002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202754 Serial (down) 9102  
Permanent link to this record
 

 
Author Tran, T.T.; Lee, Y.; Roy, S.; Tran, T.U.; Kim, Y.; Taniguchi, T.; Watanabe, K.; Milošević, M.V.; Lim, S.C.; Chaves, A.; Jang, J.I.; Kim, J. pdf  doi
openurl 
  Title Synergetic enhancement of quantum yield and exciton lifetime of monolayer WS₂ by proximal metal plate and negative electric bias Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 18 Issue 1 Pages 220-228  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The efficiency of light emission is a critical performance factor for monolayer transition metal dichalcogenides (1L-TMDs) for photonic applications. While various methods have been studied to compensate for lattice defects to improve the quantum yield (QY) of 1L-TMDs, exciton-exciton annihilation (EEA) is still a major nonradiative decay channel for excitons at high exciton densities. Here, we demonstrate that the combined use of a proximal Au plate and a negative electric gate bias (NEGB) for 1L-WS2 provides a dramatic enhancement of the exciton lifetime at high exciton densities with the corresponding QY enhanced by 30 times and the EEA rate constant decreased by 80 times. The suppression of EEA by NEGB is attributed to the reduction of the defect-assisted EEA process, which we also explain with our theoretical model. Our results provide a synergetic solution to cope with EEA to realize high-intensity 2D light emitters using TMDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001139516800001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202811 Serial (down) 9101  
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J. doi  openurl
  Title Supplementary Information for “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” Type Dataset
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Supplementary information for the article “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” containing the videos of in-situ SEM imaging (mp4 files), raw data/images, and Jupyter notebooks (ipynb files) for data treatment and plots. Link to the preprint: https://doi.org/10.48550/arXiv.2308.15123 Explanation of the data files can be found in the Information.pdf file. The Videos folder contains the in-situ SEM image series mentioned in the paper. If there are any questions/bugs, feel free to contact me at lukas.grunewaldatuantwerpen.be  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203389 Serial (down) 9100  
Permanent link to this record
 

 
Author Lauwens, J.; Kerkhofs, L.; Sala, A.; Sorée, B. pdf  doi
openurl 
  Title Superconductor-semiconductor hybrid capacitance with a nonlinear charge-voltage profile Type A1 Journal article
  Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 57 Issue 2 Pages 025301-25309  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electronic devices that work in the quantum regime often employ hybrid nanostructures to bring about a nonlinear behaviour. The nonlinearity that these can provide has proven to be useful, in particular, for applications in quantum computation. Here we present a hybrid device that acts as a capacitor with a nonlinear charge-voltage relation. The device consists of a nanowire placed between the plates of a coplanar capacitor, with a co-parallel alignment. At low temperatures, due to the finite density of states on the nanowire, the charge distribution in the capacitor is uneven and energy-dependent, resulting in a charge-dependent effective capacitance. We study this system analytically and numerically, and show that the nonlinearity of the capacitance is significant enough to be utilized in circuit quantum electrodynamics. The resulting nonlinearity can be switched on, modulated, and switched off by an external potential, thus making this capacitive device highly versatile for uses in quantum computation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082883200001 Publication Date 2023-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200300 Serial (down) 9099  
Permanent link to this record
 

 
Author Menegaldo, B.; Aleccia, D.; Nuyts, G.; Amato, A.; Orsega, E.F.; Moro, G.; Balliana, E.; De Wael, K.; Moretto, L.M.; Beltran, V. pdf  doi
openurl 
  Title Stories of the life of Saint George : materials and techniques from a Barbelli mural painting Type A1 Journal article
  Year 2023 Publication Studies in conservation Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords A1 Journal article; Art; History; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Gian Giacomo Inchiocchio (1604-1656), better known as Barbelli, was one of the main exponents of Lombard painting of the seventeenth century. A large body of work is attributed to him, encompassing a wide range of drawings, murals, and oil paintings. However, despite his broad production, there are still many open questions regarding his painting techniques and materials. In this paper, a multi-analytical study of the cycle Stories of the life of Saint George that originally decorated the presbytery of the parish church of Casaletto Vaprio (Cremona, Italy) was performed, combining non-invasive techniques with the characterisation of selected micro samples. Results show that Barbelli used a very limited number of inorganic pigments, often mixing them together to create different colours and shades. Remains of caseinate and degradation products (i.e. weddellite and whewellite) related to the strappo intervention were also highlighted. The study helped to decipher the materials and technique of this painting, providing data that can be used as a reference to study his extensive production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001080139100001 Publication Date 2023-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-3630; 2047-0584 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200302 Serial (down) 9098  
Permanent link to this record
 

 
Author Zamani, M.; Yapicioglu, H.; Kara, A.; Sevik, C. pdf  doi
openurl 
  Title Statistical analysis of porcelain tiles' technical properties : full factorial design investigation on oxide ratios and temperature Type A1 Journal article
  Year 2023 Publication Physica scripta Abbreviated Journal  
  Volume 98 Issue 12 Pages 125953-18  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This study focuses on optimizing the composition and firing temperature of porcelain tiles using statistical analysis techniques. A full factorial design, including model adequacy checking, analysis of variance, Pareto charts, interaction plots, regression model, and response optimizer is employed. The key factors were the Seger ratios of SiO2/Al2O3, Na2O/K2O, MgO/CaO, and firing temperature. The response variables investigated were bulk density, water absorption, linear shrinkage, coefficient of thermal expansion (at 500 degrees C), and strength. The statistical analysis revealed highly significant results, which were further validated, confirming their reliability for practical use in the production of porcelain tiles. The study demonstrated the effectiveness of utilizing Seger formulas and properties of typical raw materials to accurately predict the final properties of ceramic tiles. By employing SiO2/Al2O3 = 5.2, Na2O/K2O = 1.50, MgO/CaO = 3.0, and firing temperature of 1180 degrees C, optimized properties, such as maximum strength, maximum bulk density, and minimum water absorption, was achieved with a composite desirability of 0.9821.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105879800001 Publication Date 2023-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949; 1402-4896 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202033 Serial (down) 9097  
Permanent link to this record
 

 
Author Ulu Okudur, F.; Batuk, M.; Hadermann, J.; Safari, M.; De Sloovere, D.; Kumar Mylavarapu, S.; Joos, B.; D'Haen, J.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title Solution-gel-based surface modification of LiNi0.5Mn1.5O4-δ with amorphous Li-Ti-O coating Type A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue 47 Pages 33146-33158  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LNMO (LiNi0.5Mn1.5O4-delta) is a high-energy density positive electrode material for lithium ion batteries. Unfortunately, it suffers from capacity loss and impedance rise during cycling due to electrolyte oxidation and electrode/electrolyte interface instabilities at high operating voltages. Here, a solution-gel synthesis route was used to coat 0.5-2.5 mu m LNMO particles with amorphous Li-Ti-O (LTO) for improved Li conduction, surface structural stability and cyclability. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis coupled with energy dispersive X-ray (EDX) showed Ti-rich amorphous coatings/islands or Ti-rich spinel layers on many of the LTO-modified LNMO facets, with a thickness varying from about 1 to 10 nm. The surface modification in the form of amorphous islands was mostly possible on high-energy crystal facets. Physicochemical observations were used to propose a molecular mechanism for the surface modification, combining insights from metalorganic chemistry with the crystallographic properties of LNMO. The improvements in functional properties were investigated in half cells. The cell impedance increased faster for the bare LNMO compared to amorphous LTO modified LNMO, resulting in R-ct values as high as 1247 Omega (after 1000 cycles) for bare LNMO, against 216 Omega for the modified material. At 10C, the modified material boosted a 15% increase in average discharge capacity. The improvements in electrochemical performance were attributed to the increase in electrochemically active surface area, as well as to improved HF-scavenging, resulting in the formation of protective byproducts, generating a more stable interface during prolonged cycling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102666700001 Publication Date 2023-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202091 Serial (down) 9096  
Permanent link to this record
 

 
Author Souza, J.C.B.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A. pdf  doi
openurl 
  Title Soliton motion induced along ferromagnetic skyrmion chains in chiral thin nanotracks Type A1 Journal article
  Year 2023 Publication Journal of magnetism and magnetic materials Abbreviated Journal  
  Volume 587 Issue Pages 171280-171289  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic magnetic simulations we investigate the soliton motion along a pinned skyrmion chain containing an interstitial skyrmion. We find that the soliton can exhibit stable motion along the chain without a skyrmion Hall effect for an extended range of drives. Under a constant drive the solitons have a constant velocity. We also measure the skyrmion velocity-current curves and identify the signatures of different phases including a pinned phase, stable soliton motion, and quasi-free motion at higher drives where all of the skyrmions depin from the pinning centers and move along the rigid wall. In the quasi-free motion regime, the velocity is oscillatory due to the motion of the skyrmions over the pinning sites. For increasing pinning strength, the onset of soliton motion shifts to higher values of current density. We also find that for stronger pinning, the characteristic velocity-current shape is affected by the annihilation of single or multiple skyrmions in the drive interval over which the soliton motion occurs. Our results indicate that stable skyrmion soliton motion is possible and that the solitons could be used as information carriers instead of the skyrmions themselves for technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001086712600001 Publication Date 2023-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201139 Serial (down) 9095  
Permanent link to this record
 

 
Author Dingenen, F. file  openurl
  Title Solar-driven H2 production from seawater using stabilized plasmon-enhanced photocatalysts Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages XXXVIII, 210 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract As natural gas prices proved to be very volatile, sustainable alternatives are highly needed. Water-derived H2 was revealed as a promising substitute, allowing to produce a green energy carrier with a minimum of harmful emissions. Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues due to the presence of salts.Photocatalytic seawater splitting is particularly promising for this purpose, as it seems less affected by adversary seawater effects and might rely on free and renewable solar power. Unfortunately, the benchmark photocatalyst, TiO2, still suffers from its low solar light activity. It is only actived upon illumination with energetic ultraviolet light (<5% of the sunlight). In order to broaden the activity window to the visible light, the concept of the 'plasmonic rainbow' was explored. Here, TiO2 is modified with various gold-silver composites that possess the unique optical phenomenon of Surface Plasmon Resonance (SPR). This phenomenon enables the absorption of light at very specific wavelengths, depending on the metal type, size, shape and dielectric environment. The light energy might then be converted into hot carriers, strong local electromagnetic fields and/or heat. By combining multiple composites with various sizes and compositions, a broadband absorption could be obtained, resulting in significantly enhanced activity in photocatalytic model reactions under simulated sunlight. The major disadvantage of these plasmonic nanoparticles is their tendency to oxidize and deactivate. To overcome this, polymer shell stabilization strategies were found to be effective to protect the metal cores. Both conductive and non-conductive polymers were studied. For the former, a mix-and-wait strategy generating polyaniline shells of 2-5 nm was used, whille the latter was based on a Layer-by-Layer approach, allowing (sub) nanometer thickness control. For the actual H2 production experiments, the plasmonic loading was optimized in a pure water:methanol scavenger (7:1) mixture and initially the stabilization strategies proofed to be effective for simulated seawater (0.5M NaCl), even after 2 years. However, in real seawater, the activity decreased drastically due to aggregation of the photocatalyst in the presence of multivalent cations. Finally, facile immobilization strategies using 3D printing showed to be able to yield stable, solar active photocatalyst for real seawater splitting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203196 Serial (down) 9094  
Permanent link to this record
 

 
Author Peeters, H. openurl 
  Title Solar active photocatalytic self-cleaning coatings based on plasmon-embedded titania Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages XX, 125 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201390 Serial (down) 9093  
Permanent link to this record
 

 
Author Daems, E.; Bassini, S.; Mariën, L.; Op de Beeck, H.; Stratulat, A.; Zwaenepoel, K.; Vandamme, T.; op de Beeck, K.; Koljenovic, S.; Peeters, M.; Van Camp, G.; De Wael, K. pdf  doi
openurl 
  Title Singlet oxygen-based photoelectrochemical detection of single-point mutations in the KRAS oncogene Type University Hospital Antwerp
  Year 2023 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 249 Issue Pages 115957-7  
  Keywords University Hospital Antwerp; A1 Journal article; Center for Oncological Research (CORE); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Medical Genetics (MEDGEN)  
  Abstract Single nucleotide point mutations in the KRAS oncogene occur frequently in human cancers, rendering them intriguing targets for diagnosis, early detection and personalized treatment. Current detection methods are based on polymerase chain reaction, sometimes combined with next-generation sequencing, which can be expensive, complex and have limited availability. Here, we propose a novel singlet oxygen (1O2)-based photoelectrochemical detection methodology for single-point mutations, using KRAS mutations as a case study. This detection method combines the use of a sandwich assay, magnetic beads and robust chemical photosensitizers, that need only air and light to produce 1O2, to ensure high specificity and sensitivity. We demonstrate that hybridization of the sandwich hybrid at high temperatures enables discrimination between mutated and wild-type sequences with a detection rate of up to 93.9%. Additionally, the presence of background DNA sequences derived from human cell-line DNA, not containing the mutation of interest, did not result in a signal, highlighting the specificity of the methodology. A limit of detection as low as 112 pM (1.25 ng/mL) was achieved without employing any amplification techniques. The developed 1O2-based photoelectrochemical methodology exhibits unique features, including rapidity, ease of use, and affordability, highlighting its immense potential in the field of nucleic acid-based diagnostics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201875 Serial (down) 9092  
Permanent link to this record
 

 
Author Le Compte, M.; Cardenas De La Hoz, E.; Peeters, S.; Rodrigues Fortes, F.; Hermans, C.; Domen, A.; Smits, E.; Lardon, F.; Vandamme, T.; Lin, A.; Vanlanduit, S.; Roeyen, G.; van Laere, S.; Prenen, H.; Peeters, M.; Deben, C. url  doi
openurl 
  Title Single-organoid analysis reveals clinically relevant treatment-resistant and invasive subclones in pancreatic cancer Type A1 Journal article
  Year 2023 Publication npj Precision Oncology Abbreviated Journal  
  Volume 7 Issue 1 Pages 128-14  
  Keywords A1 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC)  
  Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, characterized by a treatment-resistant and invasive nature. In line with these inherent aggressive characteristics, only a subset of patients shows a clinical response to the standard of care therapies, thereby highlighting the need for a more personalized treatment approach. In this study, we comprehensively unraveled the intra-patient response heterogeneity and intrinsic aggressive nature of PDAC on bulk and single-organoid resolution. We leveraged a fully characterized PDAC organoid panel ( N  = 8) and matched our artificial intelligence-driven, live-cell organoid image analysis with retrospective clinical patient response. In line with the clinical outcomes, we identified patient-specific sensitivities to the standard of care therapies (gemcitabine-paclitaxel and FOLFIRINOX) using a growth rate-based and normalized drug response metric. Moreover, the single-organoid analysis was able to detect resistant as well as invasive PDAC organoid clones, which was orchestrates on a patient, therapy, drug, concentration and time-specific level. Furthermore, our in vitro organoid analysis indicated a correlation with the matched patient progression-free survival (PFS) compared to the current, conventional drug response readouts. This work not only provides valuable insights on the response complexity in PDAC, but it also highlights the potential applications (extendable to other tumor types) and clinical translatability of our approach in drug discovery and the emerging era of personalized medicine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001118015800001 Publication Date 2023-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-768x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201455 Serial (down) 9091  
Permanent link to this record
 

 
Author Jorissen, B.; Fernandes, L. openurl 
  Title Simple systems, complicated physics : an interview with Nir Navon Type Editorial
  Year 2023 Publication Belgian journal of physics Abbreviated Journal  
  Volume 1 Issue 6 Pages 4-5  
  Keywords Editorial; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract The EPS Antwerp Young Minds (AYM) invited Prof. Nir Navon (Yale University) to hold a colloquium for the physics department. For an audience of students and researchers, Prof. Navon presented recent advances in ultracold quantum matter and research from his own lab. His experimental work paves the way to make toy models used by theorists a reality. We sat down afterwards to discuss ultracold physics, box traps and setting up a lab from scratch.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202673 Serial (down) 9090  
Permanent link to this record
 

 
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N. url  doi
openurl 
  Title Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 3 Pages 035302-35310  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001074455300012 Publication Date 2023-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200348 Serial (down) 9089  
Permanent link to this record
 

 
Author Vervloessem, E. url  openurl
  Title The role of pulsing and humidity in plasma-based nitrogen fixation : a combined experimental and modeling study Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 358 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nitrogen (N) is an indispensable building block for all living organisms as well as for pharmaceutical and chemical industry. In a nutshell, N is needed for plants to grow and beings to live and nitrogen fixation (NF) is the process that makes N available for plants as food by converting N2 into a reactive form, such as ammonia (NH3) or nitrogen oxides (NOx), upon reacting with O2 and H2. The aim of this thesis is to elucidate (wet) plasma-based nitrogen fixation with a focus on (1) the role of pulsing in achieving low energy consumption, (2) the role of H2O as a hydrogen source in nitrogen fixation and (3) elucidation of nitrogen fixation pathways in humid air and humid N2 plasma in a combined experimental and computational study. Furthermore, this thesis aims to take into account the knowledge-gaps and challenges identified in the discussion of the state of the art. Specifically, (1) we put our focus on branching out to another way of introducing water into the plasma system, i.e. H2O vapor, (2) we de-couple the problem for pathway elucidation by starting with characterization of the chosen plasma, next a simpler gas mixture and building up from there, (3) we include modelling, though not under wet conditions and (4) we focus on also analyzing species and performance outside liquid H2O. Firstly, based on the reaction analysis of a validated quasi-1D model, we can conclude that pulsing is indeed the key factor for energy-efficient NOx- formation, due to the strong temperature drop it causes. Secondly, the thesis shows that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. Related to this, we discuss how the selectivity of plasma-based NF in humid air and humid N2 can be controlled by changing the humidity in the feed gas. Interestingly, NH3 production can be achieved in both N2 and air plasmas using H2O as a H source. Lastly, we identified a significant loss mechanism for NH3 and HNO2 that occurs in systems where these species are synthesized simultaneously, i.e. downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which decomposes into N2 and H2O. This reduces the effective NF when not properly addressed, and should therefore be considered in future works aimed at optimizing plasma-based NF. In conclusion, this thesis adds further to the current state of the art of plasma-based NF both in the presence of H2O and in dry systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:197038 Serial (down) 9088  
Permanent link to this record
 

 
Author Broos, W.; Wittner, N.; Dries, J.; Vlaeminck, S.E.; Gunde-Cimerman, N.; Cornet, I. pdf  doi
openurl 
  Title Rhodotorula kratochvilovae outperforms Cutaneotrichosporon oleaginosum in the valorisation of lignocellulosic wastewater to microbial oil Type A1 Journal article
  Year 2024 Publication Process biochemistry (1991) Abbreviated Journal  
  Volume 137 Issue Pages 229-238  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Rhodotorula kratochvilovae has shown to be a promising species for microbial oil production from lignin-derived compounds. Yet, information on R. kratochvilovae’s detoxification and microbial oil production is scarce. This study investigated the growth and microbial oil production on the phenolic-containing effluent from poplar steam explosion and its detoxification with five R. kratochvilovae strains (EXF11626, EXF9590, EXF7516, EXF3697, EXF3471) and compared them with Cutaneotrichosporon oleaginosum. The R. kratochvilovae strains reached a maximum growth rate up to four times higher than C. oleaginosum. Furthermore, all R. kratochvilovae strains generally degraded phenolics more rapidly and to a larger extent than C. oleaginosum. However, the diluted substrate limited the lipid production by all strains as the maximum lipid content and titre were 10.5% CDW and 0.40 g/L, respectively. Therefore, future work should focus on increasing lipid production by using advanced fermentation strategies and stimulating the enzyme excretion by the yeasts for complex substrate breakdown.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-5113 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202365 Serial (down) 9087  
Permanent link to this record
 

 
Author Ysebaert, T.; Samson, R.; Denys, S. pdf  doi
openurl 
  Title Revisiting dry deposition modelling of particulate matter on vegetation at the microscale Type A1 Journal article
  Year 2023 Publication Air quality, atmosphere & health Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Dry deposition is an important process determining pollutant concentrations, especially when studying the influence of urban green infrastructure on particulate matter (PM) levels in cities. Computational fluid dynamics (CFD) models of PM capture by vegetation are useful tools to increase their applicability. The meso-scale models of Zhang et al. (Atmos Environ 35:549-560, 2001) and Petroff and Zhang (Geosci Model Dev 3(2):753-769, 2010) have often been adopted in CFD models, however a comparison of these models with measurements including all PM particle sizes detrimental to health has been rarely reported and certainly not for green wall species. This study presents dry deposition experiments on real grown Hedera helix in a wind tunnel setup with wind speeds from 1 to 4 m s(-1) and PM consisting of a mixture of soot (0.02 – 0.2 mu mu m) and dust particles (0.3 – 10 mu mu m). Significant factors determining the collection efficiency (%) were particle diameter and wind speed, but relative air humidity and the type of PM (soot or dust) did not have a significant influence. Zhang's model outperformed Petroff's model for particles < 0.3 mu mu m, however the inclusion of turbulent impaction in Petroff's model resulted in better agreement with the measurements for particles > 2 – 3 mu mu m. The optimised model had an overall root-mean-square-error of similar to 4% for collection efficiency (CE) and 0.4 cm s-1 for deposition velocity (nu d), which was shown to be highly competitive against previously described models. It can thus be used to model PM deposition on other plant species, provided the correct parameterisation of the drag by this species. A detailed description of the spatial distribution of the vegetation could solve the underestimation for particle sizes of 0.3 – 2 mu mu m.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001125841300001 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1873-9318; 1873-9326 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201986 Serial (down) 9086  
Permanent link to this record
 

 
Author De Bock, A.; Belmans, B.; Vanlanduit, S.; Blom, J.; Alvarado Alvarado, A.A.; Audenaert, A. pdf  url
doi  openurl
  Title A review on the leaf area index (LAI) in vertical greening systems Type A1 Journal article
  Year 2023 Publication Building and environment Abbreviated Journal  
  Volume 229 Issue Pages 109926-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Sustainable Pavements and Asphalt Research (SuPAR); Energy and Materials in Infrastructure and Buildings  
  Abstract The leaf area index (LAI) is a key dynamic parameter in Vertical Greening Systems (VGS). It quantifies the total amount of leaf area in the canopy and largely determines the extent of co-benefits of VGS. Whereas many studies on VGS discuss the importance of the LAI, only few elaborate on the parameter itself, how it is determined and what the current limitations are in VGS. Moreover, although there is scientific consensus on the importance of LAI in VGS, specific non-destructive monitoring techniques for continuous LAI monitoring appear to be absent, which results in limited overall data on the LAI of VGS under different spatial and temporal conditions and problems in quantifying the benefits of VGS in practice. To fill these gaps, this paper specifically focuses on the LAI of VGS and its monitoring techniques. An overview of existing LAI monitoring techniques in the field of VGS is presented. To arrive at dedicated techniques, this is complemented by a thorough analysis of LAI monitoring techniques used in other research fields, e.g. agriculture and forestry. It is established that two indirect techniques for LAI monitoring are currently available in the VGS sector, but a proper standardized sampling methodology currently lacks. Monitoring techniques used in other sectors offer opportunities for developing dedicated monitoring methods for VGS, but require further research due to the specific features of VGS systems. Furthermore, guidelines are proposed for a more standardized LAI determination of reporting of LAI values in VGS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000950866100001 Publication Date 2022-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:194575 Serial (down) 9085  
Permanent link to this record
 

 
Author Poppe, R. url  openurl
  Title Refining short-range order parameters from diffuse electron scattering Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages iv, 150 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Electrons, X-rays and neutrons that pass through a thin crystalline sample will be diffracted. Diffraction patterns of crystalline materials contain Bragg reflections (sharp discrete intensity maxima) and diffuse scattering (a weak continuous background). The Bragg reflections contain information about the average crystal structure (the type of atoms and the average atomic positions), whereas the diffuse scattering contains information about the short-range order (deviations from the average crystal structure that are ordered on a local scale). Because the properties of many materials depend on the short-range order, refining short-range order parameters is essential for understanding and optimizing material properties. The refinement of short-range order parameters has previously been applied to the diffuse scattering in single-crystal X-ray and single-crystal neutron diffraction data but not yet to the diffuse scattering in single-crystal electron diffraction data. In this work, we will verify the possibility to refine short-range order parameters from the diffuse scattering in single-crystal electron diffraction data. Electron diffraction allows to acquire data on submicron-sized crystals, which are too small to be investigated with single-crystal X-ray and single-crystal neutron diffraction. In the first part of this work, we will refine short-range order parameters from the one-dimensional diffuse scattering in electron diffraction data acquired on the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2. The number of stacking faults and the twin percentages will be refined from the diffuse scattering using a Monte Carlo refinement. We will also describe a method to determine the spinel/layered phase ratio from the intensities of the Bragg reflections in electron diffraction data. In the second part of this work, we will refine short-range order parameters from the three-dimensional diffuse scattering in both single-crystal electron and single-crystal X-ray diffraction data acquired on Nb0.84CoSb. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms will be refined from the diffuse scattering using a Monte Carlo refinement and a three-dimensional difference pair distribution function refinement. The effect of different experimental parameters on the spatial resolution of the observed diffuse scattering will also be investigated. Finally, the model of the short-range Nb-vacancy order in Nb0.84CoSb will also be applied to LiNi0.5Sn0.3Co0.2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200610 Serial (down) 9084  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: