|   | 
Details
   web
Record
Author Şentürk, D.G.; De Backer, A.; Van Aert, S.
Title Element specific atom counting for heterogeneous nanostructures: Combining multiple ADF STEM images for simultaneous thickness and composition determination Type A1 Journal Article
Year (down) 2024 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 259 Issue Pages 113941
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract In this paper, a methodology is presented to count the number of atoms in heterogeneous nanoparticles based on the combination of multiple annular dark field scanning transmission electron microscopy (ADF STEM) images. The different non-overlapping annular detector collection regions are selected based on the principles of optimal statistical experiment design for the atom-counting problem. To count the number of atoms, the total intensities of scattered electrons for each atomic column, the so-called scattering cross-sections, are simultaneously compared with simulated library values for the different detector regions by minimising the squared differences. The performance of the method is evaluated for simulated Ni@Pt and Au@Ag core-shell nanoparticles. Our approach turns out to be a dose efficient alternative for the investigation of beam-sensitive heterogeneous materials as compared to the combination of ADF STEM and energy dispersive X-ray spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links
Impact Factor 2.2 Times cited Open Access
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0346.21N, GOA7723N, and EOS 40007495) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF). Approved Most recent IF: 2.2; 2024 IF: 2.843
Call Number EMAT @ emat @ Serial 8996
Permanent link to this record