|   | 
Details
   web
Record
Author Loo, R.; Arimura, H.; Cott, D.; Witters, L.; Pourtois, G.; Schulze, A.; Douhard, B.; Vanherle, W.; Eneman, G.; Richard, O.; Favia, P.; Mitard, J.; Mocuta, D.; Langer, R.; Collaert, N.
Title Epitaxial CVD Growth of Ultra-Thin Si Passivation Layers on Strained Ge Fin Structures Type A1 Journal article
Year (down) 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc
Volume 7 Issue 2 Pages P66-P72
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Epitaxially grown ultra-thin Si layers are often used to passivate Ge surfaces in the high-k gate module of (strained) Ge FinFET and Gate All Around devices. We use Si4H10 as Si precursor as it enables epitaxial Si growth at temperatures down to 330 degrees. C-V characteristics of blanket capacitors made on Ge virtual substrates point to the presence of an optimal Si thickness. In case of compressively strained Ge fin structures, the Si growth results in non-uniform and high strain levels in the strained Ge fin. These strain levels have been calculated for different shapes of the Ge fin and in function of the grown Si thickness. The high strain is the driving force for potential (unwanted) Ge surface reflow during Si deposition. The Ge surface reflow is strongly affected by the strength of the H-passivation during Si-capping and can be avoided by carefully selected process conditions. (C) The Author(s) 2018. Published by ECS.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000425215200010 Publication Date 2018-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.787 Times cited 5 Open Access OpenAccess
Notes Approved Most recent IF: 1.787
Call Number UA @ lucian @ c:irua:149326 Serial 4933
Permanent link to this record