|   | 
Details
   web
Record
Author Martinez, G.T.; van den Bos, K.H.W.; Alania, M.; Nellist, P.D.; Van Aert, S.
Title Thickness dependence of scattering cross-sections in quantitative scanning transmission electron microscopy Type A1 Journal article
Year (down) 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 187 Issue Pages 84-92
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In quantitative scanning transmission electron microscopy (STEM), scattering cross-sections have been shown to be very sensitive to the number of atoms in a column and its composition. They correspond to the integrated intensity over the atomic column and they outperform other measures. As compared to atomic column peak intensities, which saturate at a given thickness, scattering cross-sections increase monotonically. A study of the electron wave propagation is presented to explain the sensitivity of the scattering cross-sections. Based on the multislice algorithm, we analyse the wave propagation inside the crystal and its link to the scattered signal for the different probe positions contained in the scattering cross-section for detector collection in the low-, middle- and high-angle regimes. The influence to the signal from scattering of neighbouring columns is also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428131200011 Publication Date 2018-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 4 Open Access Not_Open_Access: Available from 01.02.2020
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings ( G.0374.13N , G.0369.15N , G.0368.15N and WO.010.16N ) and a PhD grant to K.H.W.v.d.B. The research leading to these results has received funding from the European Union 7th Framework Programme [ FP7 /2007-2013] under Grant agreement no. 312483 (ESTEEM2). The authors are grateful to A. Rosenauer for providing access to the StemSim software. Approved Most recent IF: 2.843
Call Number EMAT @ emat @c:irua:149384 Serial 4809
Permanent link to this record