|   | 
Details
   web
Record
Author Brito, B.G.A.; Candido, L.; Hai, G.-Q.; Peeters, F.M.
Title Quantum effects in a free-standing graphene lattice : path-integral against classical Monte Carlo simulations Type A1 Journal article
Year (down) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 195416
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In order to study quantum effects in a two-dimensional crystal lattice of a free-standing monolayer graphene, we have performed both path-integral Monte Carlo (PIMC) and classical Monte Carlo (MC) simulations for temperatures up to 2000 K. The REBO potential is used for the interatomic interaction. The total energy, interatomic distance, root-mean-square displacement of the atom vibrations, and the free energy of the graphene layer are calculated. The obtained lattice vibrational energy per atom from the classical MC simulation is very close to the energy of a three-dimensional harmonic oscillator 3k(B)T. The PIMC simulation shows that quantum effects due to zero-point vibrations are significant for temperatures T < 1000 K. The quantum contribution to the lattice vibrational energy becomes larger than that of the classical lattice for T < 400 K. The lattice expansion due to the zero-point motion causes an increase of 0.53% in the lattice parameter. A minimum in the lattice parameter appears at T similar or equal to 500 K. Quantum effects on the atomic vibration amplitude of the graphene lattice and its free energy are investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000368095400004 Publication Date 2015-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 22 Open Access
Notes ; This research was supported by the Brazilian agencies FAPESP, FAPEG, and CNPq, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:131144 Serial 4232
Permanent link to this record