toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kumar, M.; Sengupta, A.; Kummamuru, N.B. url  doi
openurl 
  Title Molecular simulations for carbon dioxide capture in silica slit pores Type A3 Journal article
  Year (down) 2023 Publication Materials Today: Proceedings Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords A3 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In present work, we have performed the Grand Canonical Monte Carlo (GCMC) simulations to quantify CO2 capture inside porous silica at high operating temperatures of 673.15 K and 873.15 K; and over a operating pressure range of 500 kPa – 4000 kPa that are methane steam reforming process parameters. Related chemical potential values at these thermodynamic conditions are obtained from the bulk phase simulations in the Canonical ensemble in conjunction with Widom’s insertion technique, where the CO2 has been accurately represented by TraPPE force field. Present structure of the porous silica is a single slit pore geometry of various heights (H = 20 Å, 31.6 Å, 63.2 Å and 126.5 Å), dimensions in which possible vapour-liquid equilibria for generic square well fluids has been reported in literature. Estimation of the pore-fluid interactions show a higher interaction between silica pore and adsorbed CO2 compared to the reported pore-fluid interactions between homogeneous carbon slit pore and adsorbed CO2; thus resulting in an enhancement of adsorption inside silica pores of H = 20 Å and H = 126.5 Å, which are respectively 3.5 times and 1.5 times higher than that in homogeneous carbon slit pores of same dimensions and at 673.15 K and 500 kPa. Estimated local density plots indicate the presence of structured layers due to more molecular packing, which confirms possible liquid-like and vapour-like phase coexistence of the supercritical bulk phase CO2 under confinement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-7853 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200944 Serial 9058  
Permanent link to this record
 

 
Author Yao, X.; Cao, S.; Zhang, X.P.; Schryvers, D. pdf  url
doi  openurl
  Title Microstructural Characterization and Transformation Behavior of Porous Ni50.8Ti49.2 Type P1 Proceeding
  Year (down) 2015 Publication Materials Today: Proceedings Abbreviated Journal  
  Volume 2 Issue 2 Pages S833-S836  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract Porous Ni50.8Ti49.2 bulk material was prepared by powder metallurgy sintering. Solid solution and aging treatments were applied to improve the phase homogeneity and phase transformation behavior. Scanning and transmission electron microscopy, aided by energy dispersive X-ray analysis, were used to study the microstructure and chemical phase content of the alloys. In-situ cooling was carried out to observe the phase transformation behavior. As-received material contains dispersed Ni2Ti4O particles while Ni4Ti3 precipitates appear after aging. Close to pore edges, the latter have a preferential orientation due to the induced stress fields in the matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371032100081 Publication Date 2015-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-7853 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes The author gratefully acknowledges the Chinese Scholarship Council (CSC) for providing a scholarship and the Key Project of the Natural Science Foundation of Guangdong Province under grant No. S2013020012805. Approved Most recent IF: NA  
  Call Number c:irua:129980 Serial 3989  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: