toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ben Abdallah, M.A.; Bacchi, A.; Parisini, A.; Canossa, S.; Bergamonti, L.; Balestri, D.; Kamoun, S. pdf  url
doi  openurl
  Title Crystal structure, vibrational, electrical, optical and DFT study of C₂H₁0N₂(IO₃)₂.HIO₃ Type A1 Journal article
  Year (down) 2020 Publication Journal Of Molecular Structure Abbreviated Journal J Mol Struct  
  Volume 1215 Issue Pages 128254-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The reinvestigation of the EDA-HIO3-H2O system using a different stoichiometric ratio gives rise to a new iodate salt C2H10N2(IO3)(2 center dot)HIO3 denoted as EBIMIA. In this study, we reported the structural properties of ethylenediammonium bis iodate mono iodic acid using X-ray powder and single crystal diffraction at room temperature. The Hirshfeld and the potential energy surface analysis reveal that I center dot center dot center dot O and N-H center dot center dot center dot O are the most noticeable interactions that took place inside the crystal and contribute to the cohesion and stability of the synthesized compound. The DSC measurement shows that this iodate salt undergoes two structural phase transitions, the first occurs at T = 290 K while the second occurs at T = 363 K. However, the dielectric analysis confirms only the second transition because it lies in the studied temperature domain 338-413K. Besides, the impedance data obey a circuit model consisting of a parallel combination of a bulk resistance and CPE. The frequency dispersion of the conductivity follows Jonscher's law and the charge carrier transport may be interpreted using the correlation barrier hopping mechanism (CBH). Finally, the electronic properties and the vibrational analysis of this novel iodate salt are studied using DFT and compared to the experimental data given by the FT-IR, Raman and UV-visible spectroscopies. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537221300012 Publication Date 2020-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes ; The authors are grateful to Pr. Giovani Predieri, Pr. Pier Paolo Lottici, and Pr. Danilo Bersani, for their help with the vibrational measurement. Moreover, authors wish to thank, Pr. Salvatore Vantaggio and Dr. Silvio Scaravonati for their contribution in carrying out the impedance spectroscopy measurements. The authors acknowledge also the Analytical Chemistry, Cultural Heritage, Inorganic Chemistry and Crystallography Unit (SCVSA department, university of Parma, Italy) and the Tunisian Ministry of Higher Education and Scientific Research (LR11ES46) for their support. ; Approved Most recent IF: 3.8; 2020 IF: 1.753  
  Call Number UA @ admin @ c:irua:170148 Serial 6480  
Permanent link to this record
 

 
Author Bal, K.M.; Cautereels, J.; Blockhuys, F. pdf  url
doi  openurl
  Title Structures and spectroscopic properties of sulfur-nitrogen-pnictogen chains : R2P-N=S=N-PR2 and R2P-N=S=N-AsR2 Type A1 Journal article
  Year (down) 2017 Publication Journal of molecular structure Abbreviated Journal J Mol Struct  
  Volume 1132 Issue Pages 102-108  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The conformational and configurational preferences of Me2PNSNPMe2 (3) and Me2PNSNAsMe2 (4) have been identified using quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. An approach in which energetic, structural (geometries and bond orders), electronic (analysis of the electron density) and spectroscopic properties are combined leads to the conclusion that these sulfur-nitrogen-pnictogen chains share many of the properties of their chalcogen-nitrogen analogues but that the through-space intramolecular interactions favouring the Z,Z configuration are even weaker than in these latter compounds. The results of this analysis also lead to an unambiguous assignment of the variable-temperature 31P and 15N NMR spectra of these compounds and their structures both in solution and in the solid state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000393254400015 Publication Date 2016-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.753 Times cited Open Access Not_Open_Access: Available from 03.10.2019  
  Notes Approved Most recent IF: 1.753  
  Call Number UA @ lucian @ c:irua:145533 Serial 4726  
Permanent link to this record
 

 
Author Stefaniak, E.A.; Darchuk, L.; Sapundjiev, D.; Kips, R.; Aregbe, Y.; Van Grieken, R. pdf  doi
openurl 
  Title New insight into UO2F2 particulate structure by micro-Raman spectroscopy Type A1 Journal article
  Year (down) 2013 Publication Journal of molecular structure Abbreviated Journal  
  Volume 1040 Issue Pages 206-212  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Uranyl fluoride particles produced via hydrolysis of uranium hexafluoride have been deposited on different substrates: polished graphite disks, silver foil, stainless steel and gold-coated silicon wafer, and measured with micro-Raman spectroscopy (MRS). All three metallic substrates enhanced the Raman signal delivered by UO2F2 in comparison to graphite. The fundamental stretching of the UO band appeared at 867 cm−1 in case of the graphite substrate, while in case of the others it was shifted to lower frequencies (down to 839 cm−1). All applied metallic substrates showed the expected effect of Raman signal enhancement; however the gold layer appeared to be most effective. Application of new substrates provides more information on the molecular structure of uranyl fluoride precipitation, which is interesting for nuclear safeguards and nuclear environmental analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000318961000027 Publication Date 2013-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:107123 Serial 8299  
Permanent link to this record
 

 
Author Michielsen, B.; Verlackt, C.; van der Veken, B.J.; Herrebout, W.A. pdf  doi
openurl 
  Title C-H\cdots X (X = S, P) hydrogen bonding : the complexes of halothane with dimethyl sulfide and trimethylphosphine Type A1 Journal article
  Year (down) 2012 Publication Journal Of Molecular Structure Abbreviated Journal J Mol Struct  
  Volume 1023 Issue Pages 90-95  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract The formation of CH⋯S and CH⋯P hydrogen bonded complexes of halothane, CHBrClCF3, with dimethyl sulfide(-d6) and trimethylphosphine(-d9) have been studied in solutions of liquid krypton using infrared and Raman spectroscopy. In the 1:1 complexes, the halothane CH stretching mode is found to be red-shifted by 43 cm−1 in the dimethyl sulfide complex, and by 63 cm−1 in the trimethylphosphine complex. The complexation enthalpies were derived and amount to −10.7(2) and −11.2(2) kJ mol−1 for the respective complexes. The experiments were supported by ab initio calculations and Monte Carlo simulations. The obtained data for the CH⋯S and CH⋯P hydrogen bonds is compared to that of corresponding CH⋯O and CH⋯N hydrogen bonds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308971900017 Publication Date 2012-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2860; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.753 Times cited 21 Open Access  
  Notes Approved Most recent IF: 1.753; 2012 IF: 1.404  
  Call Number UA @ lucian @ c:irua:100917 Serial 3519  
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R. doi  openurl
  Title The impact of quantum chemical methods on the interpretation of molecular spectra of carbon clusters (review article) Type A1 Journal article
  Year (down) 1993 Publication Journal of molecular structure Abbreviated Journal J Mol Struct  
  Volume 294 Issue Pages 21-24  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1993KU48000006 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2860; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.602 Times cited 21 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:6148 Serial 1560  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: