toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Souza, J.C.B.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A. pdf  doi
openurl 
  Title Soliton motion induced along ferromagnetic skyrmion chains in chiral thin nanotracks Type A1 Journal article
  Year (down) 2023 Publication Journal of magnetism and magnetic materials Abbreviated Journal  
  Volume 587 Issue Pages 171280-171289  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic magnetic simulations we investigate the soliton motion along a pinned skyrmion chain containing an interstitial skyrmion. We find that the soliton can exhibit stable motion along the chain without a skyrmion Hall effect for an extended range of drives. Under a constant drive the solitons have a constant velocity. We also measure the skyrmion velocity-current curves and identify the signatures of different phases including a pinned phase, stable soliton motion, and quasi-free motion at higher drives where all of the skyrmions depin from the pinning centers and move along the rigid wall. In the quasi-free motion regime, the velocity is oscillatory due to the motion of the skyrmions over the pinning sites. For increasing pinning strength, the onset of soliton motion shifts to higher values of current density. We also find that for stronger pinning, the characteristic velocity-current shape is affected by the annihilation of single or multiple skyrmions in the drive interval over which the soliton motion occurs. Our results indicate that stable skyrmion soliton motion is possible and that the solitons could be used as information carriers instead of the skyrmions themselves for technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001086712600001 Publication Date 2023-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201139 Serial 9095  
Permanent link to this record
 

 
Author Ozcan, M.; Ozen, S.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title Structural, electronic and vibrational properties of ultra-thin octahedrally coordinated structure of EuO2 Type A1 Journal article
  Year (down) 2020 Publication Journal Of Magnetism And Magnetic Materials Abbreviated Journal J Magn Magn Mater  
  Volume 493 Issue 493 Pages 165668  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Novel stable ultra-thin phases of europium oxide are investigated by means of state-of-the-art first principles calculations. Total energy calculations show that single layers of EuO2 and Eu(OH)(2) can be stabilized in an octahedrally coordinated (1T) atomic structure. However, phonon calculations reveal that although both structures are energetically feasible, only the 1T-EuO2 phase has dynamical stability. The phonon spectrum of 1T-EuO2 displays three Raman active modes; a non-degenerate out-of-plane A(1g) mode at 353.5 cm(-1) and two doubly-degenerate in-plane E-g modes at 304.3 cm(-1). Furthermore, magnetic ground state and electronic band dispersion calculations show that the single layer EuO2 is a metal with net magnetic moment of 5(mu B) per unitcell resulting in a half-metallic ferrimagnetic behavior. Moreover, robustness of the half-metallic ferrimagnetic characteristics of EuO2 is confirmed by the application of electric field and charging. Single layer 1T-EuO2, with its stable ultra-thin structure and half-metallic ferrimagnetic feature, is a promising novel material for nanoscale electronic and spintronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486397800003 Publication Date 2019-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 1 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 117F095. MY is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. ; Approved Most recent IF: 2.7; 2020 IF: 2.63  
  Call Number UA @ admin @ c:irua:162755 Serial 6323  
Permanent link to this record
 

 
Author Bafekry, A.; Mortazavic, B.; Shayesteh, S.F. pdf  doi
openurl 
  Title Band gap and magnetism engineering in Dirac half-metallic Na2C nanosheet via layer thickness, strain and point defects Type A1 Journal article
  Year (down) 2019 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 491 Issue 491 Pages 165565  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Na2C is a novel two-dimensional material with Dirac Half-metal (DHM) characteristic, exhibiting a combination of single-spin massless Dirac fermions and half-semimetal. In this paper based on the first-principles calculations, we studied the mechanical, electronic, magnetic and optical properties of Na2C nanosheet. The elastic modulus of Na2C was measured to 18.5 N/m and isotropic, whereas it shows anisotropic tensile strengths of 2.85 and 2.04 N/m, for the loading along the zigzag and armchair directions, respectively. We found that Na2C, is a DHM with band gap of 0.7 eV in the up-spin channel and has 2 mu(B) magnetic moment per unit cell. In addition, we investigated the effects of number of atomic layers (thickness), electric field and strain on the possibility of further tuning of the electronic and magnetic properties of Na2C. Our calculations show that by increasing the number of layers from monolayer to bulk, a transition from DHM to ferromagnetic metal occurs with a high magnetic moments in the range of 16-30 mu(B). With applying an electric field on the Na2C bilayer (within the ferromagnetic and anti-ferromagnetic orders), energy band gap is slightly increased. In addition our results indicate that the electronic structure can be significantly modified by applying the mechanical straining. In this regard, under the biaxial strain (from 0% to – 8%) or large uniaxial strains (> – 6%), we observed the DHM to ferromagnetic-metal transition. Moreover, vacancy defects and atom substitutions can also effect the electronic and magnetic properties of Na2C nanosheet. Defective Na2C with single and double vacancies, was found to show the metallic response. With various atom substitutions this nanosheet exhibits; ferromagnetic-metal (Si and Be) with 5.2 and 3 mu(B); dilute-magnetic semiconductor (B and N) with 3 and 7 mu(B) magnetic moments, respectively. In the case of B or N atoms replacing the native C atom, the down-spin channel yields about 1 eV band gap. Interestingly, replacing the Na atoms in the native Na2C lattice with the Li can result in the formation of magnetic topological insulator phase with nontrivial band gap in the down-spin channel (25 meV and 0.15 eV) and up-spin channel (0.75 eV), in addition exhibit 8 mu(B) magnetic moment in the ground state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486396100010 Publication Date 2019-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 13 Open Access  
  Notes ; B. M. appreciates the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). We acknowledge OpenMX team for OpenMX code. ; Approved Most recent IF: 2.63  
  Call Number UA @ admin @ c:irua:163697 Serial 5408  
Permanent link to this record
 

 
Author Angelakeris, M.; Li, Z.A.; Hilgendorff, M.; Simeonidis, K.; Sakellari, D.; Filippousi, M.; Tian, H.; Van Tendeloo, G.; Spasova, M.; Acet, M.; Farle, M. pdf  url
doi  openurl
  Title Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles Type A1 Journal article
  Year (down) 2015 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 381 Issue 381 Pages 179-187  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Biomedical nanomagnetic carriers are getting a higher impact in therapy and diagnosis schemes while their constraints and prerequisites are more and more successfully confronted. Such particles should possess a well-defined size with minimum agglomeration and they should be synthesized in a facile and reproducible high-yield way together with a controllable response to an applied static or dynamic field tailored for the specific application. Here, we attempt to enhance the heating efficiency in magnetic particle hyperthermia treatment through the proper adjustment of the core-shell morphology in ferrite particles, by controlling exchange and dipolar magnetic interactions at the nanoscale. Thus, core-shell nanoparticles with mutual coupling of magnetically hard (CoFe2O4) and soft (MnFe2O4) components are synthesized with facile synthetic controls resulting in uniform size and shell thickness as evidenced by high resolution transmission electron microscopy imaging, excellent crystallinity and size monodispersity. Such a magnetic coupling enables the fine tuning of magnetic anisotropy and magnetic interactions without sparing the good structural, chemical and colloidal stability. Consequently, the magnetic heating efficiency of CoFe2O4. and MnFe2O4 core-shell nanoparticles is distinctively different horn that of their counterparts, even though all these nanocrystals were synthesized under similar conditions. For better understanding of the AC magnetic hyperthermia response and its correlation with magnetic-origin features we study the effect of the volume ratio of magnetic hard and soft phases in the bimagnetic core-shell nanocrystals. Eventually, such particles may be considered as novel heating carriers that under further biomedical functionalization may become adaptable multifunctional heat-triggered nanoplatforms. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000349361100027 Publication Date 2014-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 20 Open Access  
  Notes 312483 Esteem2; Esteem2_ta Approved Most recent IF: 2.63; 2015 IF: 1.970  
  Call Number c:irua:125284 c:irua:125284 Serial 1049  
Permanent link to this record
 

 
Author Khazzan, S.; Bessais, L.; Van Tendeloo, G.; Mliki, N. pdf  doi
openurl 
  Title Correlation between the nanocrystalline Sm(Fe,Mo)12 and its out of equilibrium phase Sm(Fe,Mo)10 Type A1 Journal article
  Year (down) 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 363 Issue Pages 125-132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanostructured Sm-Fe-Mo semi-hard magnetic material exhibiting enhanced magnetic properties can be produced by ball milling followed by recrystallization. Milled samples were annealed for 30 min in a vacuum at different temperatures (T-A) between 700 and 1190 degrees C. The effects of heat treatment and Mo content on structural and magnetic property changes have been investigated by means of X-ray diffraction using the Rietvekl method, transmission electron microscopy and magnetic measurements. For samples annealed at T-A > 900 degrees C the tetragonal ThMn12-type structure is identified, while for 700 < T-A < 900 degrees C a new out of equilibrium P6/mmm type structure was found as the major phase. This novel nanocrystalline phase has never been synthesized before. The correspondent stoichiometry is determined on the basis of the vacancy model. The Rietveld analysis gives a stoichiometry ratio equal to 1:10, for the out of equilibrium hexagonal phase, which is described with three crystallographic transition metal sites: 3g is fully occupied, 61 occupation is limited to hexagons surrounding the Fe dumbbell pairs 2e. We have performed a magnetic and structural study of nanocrystalline metastable P6/mrnm Sm(Fe1-xMo)(10), correlated with structural transformation towards its equilibrium derivative 14/mrnm Sm(Fe1-xMo)(12). A maximum of the coercive field H-C (H-C > 5 kOe) has been observed for the new hexagonal P6/rnmm phase suggesting that nanocrystalline Sm(Fe,Mo)(10), is a semi hard material, and is potential candidate for magnetic recording. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000335393900021 Publication Date 2014-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.63; 2014 IF: 1.970  
  Call Number UA @ lucian @ c:irua:117139 Serial 524  
Permanent link to this record
 

 
Author Ghosh, S.; Tongay, S.; Hebard, A.F.; Sahin, H.; Peeters, F.M. doi  openurl
  Title Ferromagnetism in stacked bilayers of Pd/C60 Type A1 Journal article
  Year (down) 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 349 Issue Pages 128-134  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We provide experimental evidence for the existence of ferromagnetism in bilayers of Pd/C-60 which is supported by theoretical calculations based on density functional theory (DFT). The observed ferromagnetism is surprising as C-60 and Pd films are both non-ferromagnetic in the non-interacting limit. Magnetization (M) versus applied field (H) data acquired at different temperatures (T) show magnetic hysteresis with typical coercive fields (H-c) on the order of 50 Oe. From the temperature-dependent magnetization M(T) we extract a Curie temperature (T-c >= 550 K) using Bloch-like power law extrapolations to high temperatures. Using DFT calculations we investigated all plausible scenarios for the interaction between the C-60 molecules and the Pd slabs, Pd single atoms and Pd clusters. DFT shows that while the C-60 molecules are nonmagnetic, Pd films have a degenerate ground state that subject to a weak perturbation, can become ferromagnetic. Calculations also show that the interaction of C-60 molecules with excess Pd atoms and with sharp edges of a Pd slab is the most likely configuration that render the system ferromagnetic Interestingly, the calculated charge transfer (0.016 e per surface Pd atom, 0.064 e per Pd for intimate contact region) between C-60 and Pd does not appear to play an important role. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000326037600022 Publication Date 2013-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 8 Open Access  
  Notes ; We thank Prof. Amlan Biswas and Daniel Grant for Atomic Force Microscopy measurements. This work is supported by the National Science Foundation (NSF) under Contract Number 1005301 (AFH). The authors also thank S. Ciraci for fruitful discussions. All the computational resources have been provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. Sahin is also supported by a FWO Pegasus Marie Curie Long Fellowship during the study. ; Approved Most recent IF: 2.63; 2014 IF: 1.970  
  Call Number UA @ lucian @ c:irua:112214 Serial 1184  
Permanent link to this record
 

 
Author Fleurov, V.; Kikoin, K.; Ivanov, V.A.; Krstajic, P.M.; Peeters, F.M. doi  openurl
  Title Mechanisms of double magnetic exchange in dilute magnetic semiconductors Type A1 Journal article
  Year (down) 2004 Publication Journal of magnetism and magnetic materials T2 – International Conference on Magnetism (ICM 2003), JUL 27-AUG 01, 2003, Rome, ITALY Abbreviated Journal J Magn Magn Mater  
  Volume 272 Issue Part 3 Pages 1967-1968  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A microscopic Hamiltonian for interacting manganese impurities in dilute magnetic semiconductors (DMS) is derived. It is shown that in p-type III-V DMS, the indirect exchange between Mn impurities has similarities with the Zener mechanism in transition metal oxides. Here the mobile and localized holes near the top of the valence band play the role of unoccupied p-orbitals which induce ferromagnetism. T-C estimated from the proposed kinematic exchange agrees with experiments on (Ga,Mn)As. The model is also applicable to the p-doped (Ga,Mn)P system. The magnetic ordering in n-type (Ga,Mn)N is due to exchange between the electrons localized on the levels lying deep in the forbidden energy gap. This mechanism is even closer to the original Zener mechanism. (C) 2003 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000222236800142 Publication Date 2004-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.63; 2004 IF: 1.031  
  Call Number UA @ lucian @ c:irua:103233 Serial 1981  
Permanent link to this record
 

 
Author Ivanov, V.A.; Krstajic, P.M.; Peeters, F.M.; Fleurov, V.; Kikoin, K. pdf  doi
openurl 
  Title On the nature of ferromagnetism in dilute magnetic semiconductors : GaAs:Mn and GaP:Mn Type A1 Journal article
  Year (down) 2003 Publication Journal of magnetism and magnetic materials T2 – 2nd Moscow International Symposium on Magnetism (MISM 2001), JUN 20-24, 2001, MOSCOW STATE UNIV, MOSCOW, RUSSIA Abbreviated Journal J Magn Magn Mater  
  Volume 258 Issue Pages 237-240  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract On the basis of a simplified Hamiltonian for transition metal impurities in diluted magnetic semiconductors (DMS), the nature of ferromagnetism in p-type III-V DMS are investigated. Ferromagnetism is governed by the Anderson-Hubbard parameter for 3d electrons of Mn2+ and their strong hybridization with the hole carriers in the semiconducting medium. The origin of ferromagnetism in these materials has similarity with the Zener mechanism. From the energetically preferable parallel orientation of Mn spins the Curie temperature is calculated for GaAs:Mn. (C) 2002 Published by Elsevier Science B.V.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000181702000062 Publication Date 2003-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.63; 2003 IF: 0.910  
  Call Number UA @ lucian @ c:irua:103311 Serial 2442  
Permanent link to this record
 

 
Author Freire, J.A.K.; Matulis, A.; Peeters, F.M.; Freire, V.N.; Farias, G.A. doi  openurl
  Title Exciton trapping in a hybrid ferromagnetic/semiconductor magnetic antidot Type A1 Journal article
  Year (down) 2001 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 226/230 Issue Pages 2038-2039  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000170628400349 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.63; 2001 IF: 1.329  
  Call Number UA @ lucian @ c:irua:37314 Serial 1119  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Lebedev, O.I.; Amelinckx, S. doi  openurl
  Title Atomic and microstructure of CMR materials Type A1 Journal article
  Year (down) 2000 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 211 Issue Pages 73-83  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000085772100013 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 48 Open Access  
  Notes Iuap 4-10 Approved Most recent IF: 2.63; 2000 IF: 0.996  
  Call Number UA @ lucian @ c:irua:54773 Serial 165  
Permanent link to this record
 

 
Author Schuddinck, W.; Van Tendeloo, G.; Barnabé, A.; Hervieu, M.; Raveau, B. pdf  doi
openurl 
  Title Relation between structure, charge ordering and magnetotransport properties in Nd0.5Ca0.5Mn1-xCrxO3 manganites Type A1 Journal article
  Year (down) 2000 Publication Journal of magnetism and magnetic materials T2 – Symposium G Material Physics Issues and Applications of Magnetic Oxides, at the E-MRS Spring Meeting, JUN 01-04, 1999, Strasbourg, France Abbreviated Journal J Magn Magn Mater  
  Volume 211 Issue 1-3 Pages 105-110  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The relationships between incommensurability, charge ordering and magnetotransport properties in Nd0.5Ca0.5Mn1-xCrxO3 manganites have been studied by electron diffraction and lattice imaging versus temperature with 0.02 less than or equal to x less than or equal to 0.07. All compositions show an incommensurate superstructure over the whole temperature domain, despite the fact that they are ferromagnetic and conductive below 140 K, The q-vector (1/2 – delta)a* decreases with increasing temperature for all compositions x. For a given temperature q also decreases with x. Lattice images obtained at low temperature give a clear view of the characteristics of the incommensurate structure. They also provide a better understanding of the charge ordering process. The low-temperature form of the Cr-doped manganites is not a perfectly doubled cell [[2a(p)root 2 x 2a(p) x a(p)root 2]], but defects inducing a tripled cell occur pseudo-periodically. (C) 2000 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000085772100017 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 16 Open Access  
  Notes Approved Most recent IF: 2.63; 2000 IF: 0.996  
  Call Number UA @ lucian @ c:irua:104256 Serial 2858  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: