toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Annys, S.; Adgo, E.; Ghebreyohannes, T.; Van Passel, S.; Dessein, J.; Nyssen, J. pdf  doi
openurl 
  Title Impacts of the hydropower-controlled Tana-Beles interbasin water transfer on downstream rural livelihoods (northwest Ethiopia) Type A1 Journal article
  Year (down) 2019 Publication Journal Of Hydrology Abbreviated Journal J Hydrol  
  Volume 569 Issue 569 Pages 436-448  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Despite public awareness of unintended impacts (1980s) and well-developed international standards (2000s), downstream impacts of large hydropower projects still very often are not properly assessed. Impacts of (hydropower-regulated) interbasin water transfers (IBWTs) are considered self-evidently positive, although they can have far-reaching consequences for hydrogeomorphological systems and consequently river-dependent communities. In this study, the downstream direct and indirect impacts of the Ethiopian hydropower-regulated Tana-Beles IBWT are evaluated in an interdisciplinary way. The components of the framework of rural livelihoods are considered and changing contexts, resources availabilities and livelihood strategies are analysed. Mixed methods are applied, combining hydrogeomorphological field observations, GIS analyses, scientific literature, policy documents, and semi-structured interviews with local people and local to federal authorities. Results show that the IBWT drastically increased the Beles rivers discharge (with an average release of +92 m3 s−1 at the outlet; *2 in rainy season and *12 in dry season 100 km downstream of the water release) and introduced dangerous situations for local communities (over 250 people drowned in the river). River bank erosion resulted in the uncompensated loss of farmland (163 ha) and the establishment of large-scale commercial farms increased the pressure on land and led to the impoverishment of displaced communities (4310 households). The project was implemented top-down, without any transparency, benefit sharing or compensation for external costs. This stresses the importance of downstream interdisciplinary impact assessments and highlights the need for decent in-depth ex post-analyses of hydropower projects. Environmental impact assessments should be taken seriously and cannot be considered a formality. In Ethiopia and in many developing countries, the hydropower industry is booming. Although dams and IBWTs can be the best solution for water-related problems in specific contexts, national development goals (such as the expansion of the electricity network) should not be at the expense of rural livelihoods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457952900032 Publication Date 2018-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.483 Times cited 2 Open Access  
  Notes ; This study was funded by the Flemish Research Foundation (FWO, Belgium), through project No. G022217N and a specific travel grant for a long stay abroad (No. V445417N). We acknowledge the cooperation with the Bahir Dar University VLIR-UOS IUC programme. All support given by Bahir Dar University has been greatly appreciated and many thanks go to Yonnas Shawul and Deribew Fenetie, for assisting and translating in the field. Staff of various ranks in administrative offices are thanked for their cooperation and mostly openness during interviews. Special thanks go to the local farmers and other rural dwellers, for their cooperation and contribution to this research. We thank the two anonymous reviewers for their constructive comments. ; Approved Most recent IF: 3.483  
  Call Number UA @ admin @ c:irua:156935 Serial 6215  
Permanent link to this record
 

 
Author Rezaei, M.; Seuntjens, P.; Shahidi, R.; Joris, I.; Boenne, W.; Al-Barri, B.; Cornelis, W. pdf  doi
openurl 
  Title The relevance of in-situ and laboratory characterization of sandy soil hydraulic properties for soil water simulations Type A1 Journal article
  Year (down) 2016 Publication Journal of hydrology Abbreviated Journal  
  Volume 534 Issue Pages 251-265  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Field water flow processes can be precisely delineated with proper sets of soil hydraulic properties derived from in situ and/or laboratory experiments. In this study we analyzed and compared soil hydraulic properties obtained by traditional laboratory experiments and inverse optimization tension infiltrometer data along the vertical direction within two typical Podzol profiles with sand texture in a potato field. The main goal was to identify proper sets of hydraulic parameters and to evaluate their relevance on hydrological model performance for irrigation management purposes. Tension disc infiltration experiments were carried out at four and five different depths for both profiles at consecutive negative pressure heads of 12, 6, 3 and 0.1 cm. At the same locations and depths undisturbed samples were taken to determine Mualem-van Genuchten (MVG) hydraulic parameters (theta(r), residual water content, theta(s), saturated water content, alpha and n, shape parameters and K-ls, saturated hydraulic conductivity) in the laboratory. Results demonstrated horizontal differences and vertical variability of hydraulic properties. The tension disc infiltration data fitted well in inverse modeling using Hydrus 2D/3D in combination with final water content at the end of the experiment, theta(f). Four MVG parameters (theta(s), alpha, n and field saturated hydraulic conductivity K-fs) were estimated (theta(r) set to zero), with estimated K-ls and alpha values being relatively similar to values from Wooding's solution which used as initial value and estimated theta(s) corresponded to (effective) field saturated water content, theta(f). The laboratory measurement of K-ls yielded 2-30 times higher values than the field method K-fs from top to subsoil layers, while there was a significant correlation between both K-s values (r = 0.75). We found significant differences of MVG parameters theta(s), n and alpha values between laboratory and field measurements, but again a significant correlation was observed between laboratory and field MVG parameters namely K-s, n, theta(s) (r >= 0.59). Assessment of the parameter relevance in 1-D model simulations, illustrated that the model over predicted and under predicted top soil-water content using laboratory and field experiments data sets respectively. The field MVG parameter data set resulted in better agreement to observed soil-water content as compared to the laboratory data set at nodes 10 and 20 cm. However, better simulation results were achieved using the laboratory data set at 30-60 cm depths. Results of our study do not confirm whether laboratory or field experiments data sets are most appropriate to predict soil water fluctuations in a complete soil profile, while field experiments are preferred in many studies. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371940900022 Publication Date 2016-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:133161 Serial 8657  
Permanent link to this record
 

 
Author Van Hoey, S.; Seuntjens, P.; van der Kwast, J.; Nopens, I. pdf  doi
openurl 
  Title A qualitative model structure sensitivity analysis method to support model selection Type A1 Journal article
  Year (down) 2014 Publication Journal of hydrology Abbreviated Journal  
  Volume 519 Issue D Pages 3426-3435  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The selection and identification of a suitable hydrological model structure is a more challenging task than fitting parameters of a fixed model structure to reproduce a measured hydrograph. The suitable model structure is highly dependent on various criteria, i.e. the modeling objective, the characteristics and the scale of the system under investigation and the available data. Flexible environments for model building are available, but need to be assisted by proper diagnostic tools for model structure selection. This paper introduces a qualitative method for model component sensitivity analysis. Traditionally, model sensitivity is evaluated for model parameters. In this paper, the concept is translated into an evaluation of model structure sensitivity. Similarly to the one-factor-at-a-time (OAT) methods for parameter sensitivity, this method varies the model structure components one at a time and evaluates the change in sensitivity towards the output variables. As such, the effect of model component variations can be evaluated towards different objective functions or output variables. The methodology is presented for a simple lumped hydrological model environment, introducing different possible model building variations. By comparing the effect of changes in model structure for different model objectives, model selection can be better evaluated. Based on the presented component sensitivity analysis of a case study, some suggestions with regard to model selection are formulated for the system under study: (1) a non-linear storage component is recommended, since it ensures more sensitive (identifiable) parameters for this component and less parameter interaction; (2) interflow is mainly important for the low flow criteria; (3) excess infiltration process is most influencing when focussing on the lower flows; (4) a more simple routing component is advisable; and (5) baseflow parameters have in general low sensitivity values, except for the low flow criteria. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347589600057 Publication Date 2014-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:123809 Serial 7395  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: