toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Meng, S.; Li, S.; Sun, S.; Bogaerts, A.; Liu, Y.; Yi, Y. pdf  url
doi  openurl
  Title NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts Type A1 Journal Article
  Year (down) 2024 Publication Chemical Engineering Science Abbreviated Journal Chemical Engineering Science  
  Volume 283 Issue Pages 119449  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma catalysis has emerged as a promising approach for driving thermodynamically unfavorable chemical

reactions. Nevertheless, comprehending the mechanisms involved remains a challenge, leading to uncertainty

about whether the optimal catalyst in plasma catalysis aligns with that in thermal catalysis. In this research, we

explore this question by studying monometallic catalysts (Fe, Co, Ni and Mo) and bimetallic catalysts (Fe-Co, Mo-

Co, Fe-Ni and Mo-Ni) in both thermal catalytic and plasma catalytic NH3 decomposition. Our findings reveal that

the Fe-Co bimetallic catalyst exhibits the highest activity in thermal catalysis, the Fe-Ni bimetallic catalyst

outperforms others in plasma catalysis, indicating a discrepancy between the optimal catalysts for the two

catalytic modes in NH3 decomposition. Comprehensive catalyst characterization, kinetic analysis, temperature

program surface reaction experiments and plasma diagnosis are employed to discuss the key factors influencing

NH3 decomposition performance.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105312500001 Publication Date 2023-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.7 Times cited Open Access Not_Open_Access  
  Notes Universiteit Antwerpen, 32249 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; Approved Most recent IF: 4.7; 2024 IF: 2.895  
  Call Number PLASMANT @ plasmant @c:irua:201009 Serial 8967  
Permanent link to this record
 

 
Author Andersen, Ja.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Ammonia decomposition in a dielectric barrier discharge plasma: Insights from experiments and kinetic modeling Type A1 Journal article
  Year (down) 2023 Publication Chemical engineering science Abbreviated Journal  
  Volume 271 Issue Pages 118550  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Utilizing ammonia as a storage medium for hydrogen is currently receiving increased attention. A possible method to retrieve the hydrogen is by plasma-catalytic decomposition. In this work, we combined an experimental study, using a dielectric barrier discharge plasma reactor, with a plasma kinetic model, to get insights into the decomposition mechanism. The experimental results revealed a similar effect on the ammonia conversion when changing the flow rate and power, where increasing the specific energy input (higher power or lower flow rate) gave an increased conversion. A conversion as high as 82 % was achieved at a specific energy input of 18 kJ/Nl. Furthermore, when changing the discharge volume from 31 to 10 cm3, a change in the plasma distribution factor from 0.2 to 0.1 was needed in the model to best describe the conversions of the experiments. This means that a smaller plasma volume caused a higher transfer of energy through micro-discharges (non-uniform plasma), which was found to promote the decomposition of ammonia. These results indicate that it is the collisions between NH3 and the high-energy electrons that initiate the decomposition. Moreover, the rate of ammonia destruction was found by the model to be in the order of 1022 molecules/(cm3 s) during the micro-discharges, which is 5 to 6 orders of magnitude higher than in the afterglows. A considerable re-formation of ammonia was found to take place in the afterglows, limiting the overall conversion. In addition, the model revealed that implementation of packing material in the plasma introduced high concentrations of surface-bound hydrogen atoms, which introduced an additional ammonia re-formation pathway through an Eley-Rideal reaction with gas phase NH2. Furthermore, a more uniform plasma is predicted in the presence of MgAl2O4, which leads to a lower average electron energy during micro-discharges and a lower conversion (37 %) at a comparable residence time for the plasma alone (51 %).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000946293200001 Publication Date 2023-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the packing material used, the research group PLASMANT (UAntwerpen) for sharing their plasma kinetic model and allowing us to perform the calculations on their clusters, and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 4.7; 2023 IF: 2.895  
  Call Number PLASMANT @ plasmant @c:irua:195204 Serial 7237  
Permanent link to this record
 

 
Author Peng, L.; Kassotaki, E.; Liu, Y.; Sun, J.; Dai, X.; Pijuan, M.; Rodriguez-Roda, I.; Buttiglieri, G.; Ni, B.-J. pdf  url
doi  openurl
  Title Modelling cometabolic biotransformation of sulfamethoxazole by an enriched ammonia oxidizing bacteria culture Type A1 Journal article
  Year (down) 2017 Publication Chemical engineering science Abbreviated Journal  
  Volume 173 Issue Pages 465-473  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Antibiotics such as sulfamethoxazole (SFX) are environmentally hazardous after being released into the aquatic environment and challenges remain in the development of engineered prevention strategies. In this work, a mathematical model was developed to describe and evaluate cometabolic biotransformation of SFX and its transformation products (TPs) in an enriched ammonia oxidizing bacteria (AOB) culture. The growth-linked cometabolic biodegradation by AOB, non-growth transformation by AOB and nongrowth transformation by heterotrophs were considered in the model framework. The production of major TPs comprising 4-Nitro-SFX, Desamino-SFX and N-4-Acetyl-SFX was also specifically modelled. The validity of the model was demonstrated through testing against literature reported data from extensive batch tests, as well as from long-term experiments in a partial nitritation sequencing batch reactor (SBR) and in a combined SBR + membrane aerated biofilm reactor performing nitrification/denitrification. Modelling results revealed that the removal efficiency of SFX increased with the increase of influent ammonium concentration, whereas the influent organic matter, hydraulic retention time and solid retention time exerted a limited effect on SFX biodegradation with the removal efficiencies varying in a narrow range. The variation of influent SFX concentration had no impact on SFX removal efficiency. The established model framework enables interpretation of a range of experimental observations on SFX biodegradation and helps to identify the optimal conditions for efficient removal. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411764200039 Publication Date 2017-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:146629 Serial 8267  
Permanent link to this record
 

 
Author Liu, Y.; Ngo, H.H.; Guo, W.; Zhou, J.; Peng, L.; Wang, D.; Chen, X.; Sun, J.; Ni, B.-J. pdf  doi
openurl 
  Title Optimizing sulfur-driven mixotrophic denitrification process : system performance and nitrous oxide emission Type A1 Journal article
  Year (down) 2017 Publication Chemical engineering science Abbreviated Journal  
  Volume 172 Issue Pages 414-422  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrate contamination of groundwater has been recognized as a significant environmental problem world widely. Sulfur-driven mixotrophic denitrification has been demonstrated as a promising groundwater treatment process, which though plays an important role in nitrous oxide (N2O) emissions, significantly contributing to the overall carbon footprint of the system. However, the current process optimizations only focus on nitrate removal and excess sulfate control, with the N2O emission being ignored. In this work, an integrated mathematical model was proposed to evaluate the N2O emission as well as the excess sulfate production and carbon source utilization in sulfur-driven mixotrophic denitrification process. In this model, autotrophic and heterotrophic denitrifiers use their corresponding electron donors (sulfur and organic matter, respectively) to reduce nitrate to nitrogen gas, with each modeled as three-step denitrification (NO3 to N-2 via NO2 and N2O) driven by sulfur or organic matter to describe all potential N2O accumulation steps. The developed model, employing model parameters previously reported in literature, was successfully validated using N2O and sulfate data from two mixotrophic denitrification systems with different initial conditions. Modeling results revealed substantial N2O accumulation due to the relatively low autotrophic N2O reduction activity as compared to heterotrophic N2O reduction activity, explaining the observation that higher carbon source addition resulted in lower N2O accumulation in sulfur-driven mixotrophic denitrifying system. Based on the validated model, optimizations of the overall system performance were carried out. Application of the model to simulate long-term operations of sulfur-driven mixotrophic denitrification process indicates that longer sludge retention time reduces N2O emission due to better retention of active biomass. High-level total nitrogen removal with significant N2O emission mitigation, appropriate excess sulfate control and maximized COD utilization can be achieved simultaneously through controlling the influent nitrate and COD concentrations. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410833900034 Publication Date 2017-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:146634 Serial 8344  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: