toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Contino, A.; Ciofi, I.; Wu, X.; Asselberghs, I.; Celano, U.; Wilson, C.J.; Tokei, Z.; Groeseneken, G.; Sorée, B. pdf  doi
openurl 
  Title Modeling of edge scattering in graphene interconnects Type A1 Journal article
  Year 2018 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 39 Issue 7 Pages (down) 1085-1088  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphene interconnects are being considered as a promising candidate for beyond CMOS applications, thanks to the intrinsic higher carrier mobility, lower aspect ratio and better reliability with respect to conventional Cu damascene interconnects. However, similarly to Cu, line edge roughness can seriously affect graphene resistance, something which must be taken into account when evaluating the related performance benefits. In this letter, we present a model for assessing the impact of edge scattering on the resistance of graphene interconnects. Our model allows the evaluation of the total mean free path in graphene lines as a function of graphene width, diffusive scattering probability and edge roughness standard deviation and autocorrelation length. We compare our model with other models from literature by benchmarking them using the same set of experimental data. We show that, as opposed to the considered models from literature, our model is capable to describe the mobility drop with scaling caused by significantly rough edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437087400041 Publication Date 2018-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 3.048  
  Call Number UA @ lucian @ c:irua:152465UA @ admin @ c:irua:152465 Serial 5114  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Verberck, B.; Ionova, G.V. doi  openurl
  Title Molecular interaction energies and optimal configuration of a cubane dimer Type A1 Journal article
  Year 2010 Publication International journal of quantum chemistry Abbreviated Journal Int J Quantum Chem  
  Volume 110 Issue 5 Pages (down) 1063-1069  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have studied the dependence of the binding energy of a cubane dimer on the mutual orientation of and the distance between the composing monomers employing the second-order Møller-Plesset perturbation scheme (MP2) with the cc-pVDZ molecular basis set. We have found that the MP2 contribution from the molecular correlations is responsible for the bound state of the cubane dimer, whereas the Hartree-Fock contribution remains anti-bonding at all intermolecular distances. Starting with two molecules in the standard orientation and centers of mass at (0,0,0) and (0,0,d), respectively, the maximal binding energy is found at d = 5.125 Å and one of the monomers rotated by 45° about the z-axis. This configuration implies that the hydrogen atoms belonging to different monomers tend to repel each other. The results are in agreement with experimental data on the optimal packing of cubane molecules in the solid state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000274720000011 Publication Date 2009-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7608;1097-461X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.92 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 2.92; 2010 IF: 1.302  
  Call Number UA @ lucian @ c:irua:81944 Serial 2179  
Permanent link to this record
 

 
Author Tyutyunnik, A.P.; Slobodin, B.V.; Samigullina, R.F.; Verberck, B.; Tarakina, N.V. doi  openurl
  Title K2CaV2O7 : a pyrovanadate with a new layered type of structure in the A2BV2O7 family Type A1 Journal article
  Year 2013 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 42 Issue 4 Pages (down) 1057-1064  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The crystal structure of K2CaV2O7 prepared by a conventional solid-state reaction has been solved by a direct method and refined using Rietveld full profile fitting based on X-ray powder diffraction data. This compound crystallises in the triclinic space group (P (1) over bar, Z = 2) with unit cell constants a = 7.1577(1) angstrom, b = 10.5104(2) angstrom, c = 5.8187(1) angstrom, alpha = 106.3368(9)degrees, beta = 106.235(1)degrees, gamma = 71.1375(9)degrees. The structure can be described as infinite undulating CaV2O72- layers parallel to the ac plane, which consist of pairs of edge-sharing CaO6 octahedra connected to each other through V2O7 pyrogroups. The potassium atoms are positioned in two sites between the layers, with a distorted IX-fold coordination of oxygen atoms. The chemical composition obtained from the structural solution was confirmed by energy-dispersive X-ray analysis. The stability of compounds in the family of alkali metal calcium pyrovanadates is discussed based on an analysis of the correlation between anion and cation sizes and theoretical first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000312659200030 Publication Date 2012-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 3 Open Access  
  Notes ; N.V.T. acknowledges funding by the Bavarian Ministry of Sciences, Research and the Arts. B. V. was financially supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 4.029; 2013 IF: 4.097  
  Call Number UA @ lucian @ c:irua:105945 Serial 3536  
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Schweigert, I.; Peeters, F.M. url  doi
openurl 
  Title Induced order and re-entrant melting in classical two-dimensional binary clusters Type A1 Journal article
  Year 2006 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 74 Issue 6 Pages (down) 1046-1052  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000238029600017 Publication Date 2006-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 17 Open Access  
  Notes Approved Most recent IF: 1.957; 2006 IF: 2.229  
  Call Number UA @ lucian @ c:irua:59453 Serial 1602  
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
  Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 12 Issue 11 Pages (down) 1045-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414531800011 Publication Date 2017-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 65 Open Access  
  Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:147406 Serial 4902  
Permanent link to this record
 

 
Author Partoens, B.; Peeters, F.M. openurl 
  Title Enhanced spin and isospin blockade in two vertically coupled quantum dots Type P1 Proceeding
  Year 2001 Publication Abbreviated Journal  
  Volume Issue Pages (down) 1035-1036  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:37297 Serial 1054  
Permanent link to this record
 

 
Author Mattauch, S.; Heger, G.; Michel, K.H. pdf  doi
openurl 
  Title High resolution neutron and X-ray diffraction studies as a function of temperature and electric field of the ferroelectric phase transition of RDP Type A1 Journal article
  Year 2004 Publication Crystal research and technology Abbreviated Journal Cryst Res Technol  
  Volume 39 Issue 12 Pages (down) 1027-1054  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Neutron and high resolution X-ray diffraction investigations on perfect single crystals of RbH2PO4 (RDP), a hydrogen bonded ferroelectric of KDP type are reported. The results of crystal structure analysis from diffraction data, below and above the paraelectric – ferroelectric phase transition, support a disorder – order character Of [PO4H2](-)-groups. The tetragonal symmetry of the paraelectric phase with the double well potential of the hydrogen atoms obtained by diffraction, results simply from a time-space average of orthorhombic symmetry. According to the group – subgroup relation between the tetragonal space group 142d and the orthorhombic Fdd2 a short range order of ferroelectric clusters in the tetragonal phase is observed. With decreasing temperature the ferroelectric clusters increase and the long range interaction between their local polarisation vectors leads to the formation of lamellar ferroelectric domains with alternating polarisation directions at T-C = 147 K. From the high resolution X-ray data it is concluded that below T-C the ferroelastic strain in the (a,b)-plane leads to micro-angle grain boundaries at the domain walls. The tilt angle is enhanced by an applied electric field parallel to the ferroelectric axis. The resulting dislocations at the domain walls persist in the paraelectric phase leading to a memory effect for the arrangement of twin lamellae. With increased electric field the phase transition temperature T-C is decreased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000225681100001 Publication Date 2004-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0232-1300;1521-4079; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1 Times cited 12 Open Access  
  Notes Approved Most recent IF: 1; 2004 IF: 0.770  
  Call Number UA @ lucian @ c:irua:94785 Serial 1459  
Permanent link to this record
 

 
Author Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R.T.; Sahin, H.; Selamet, Y. doi  openurl
  Title Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes Type A1 Journal article
  Year 2018 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 428 Issue 428 Pages (down) 1010-1017  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4“bis(diphenylamino)-1, 1':3”-terpheny1-5' carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-y1-1,1':3'1'-terpheny1-5' carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13,1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as n-n interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000415227000128 Publication Date 2017-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 2 Open Access  
  Notes ; This work was supported by TUBITAK (The Scientific and Technical Research Council of Turkey) with project number 112T946. We also thank AQuReC (Applied Quantum Research Center) for Raman measurements. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Bilim Akademisi The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.387  
  Call Number UA @ lucian @ c:irua:154608UA @ admin @ c:irua:154608 Serial 5101  
Permanent link to this record
 

 
Author Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Double moiré with a twist : supermoiré in encapsulated graphene Type A1 Journal article
  Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 20 Issue 2 Pages (down) 979  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A periodic spatial modulation, as created by a moire pattern, has been extensively studied with the view to engineer and tune the properties of graphene. Graphene encapsulated by hexagonal boron nitride (hBN) when slightly misaligned with the top and bottom hBN layers experiences two interfering moire patterns, resulting in a so-called supermoire (SM). This leads to a lattice and electronic spectrum reconstruction. A geometrical construction of the nonrelaxed SM patterns allows us to indicate qualitatively the induced changes in the electronic properties and to locate the SM features in the density of states and in the conductivity. To emphasize the effect of lattice relaxation, we report band gaps at all Dirac-like points in the hole doped part of the reconstructed spectrum, which are expected to be enhanced when including interaction effects. Our result is able to distinguish effects due to lattice relaxation and due to the interfering SM and provides a clear picture on the origin of recently experimentally observed effects in such trilayer heterostuctures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000514255400021 Publication Date 2020-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 33 Open Access OpenAccess  
  Notes ; This work was funded by FLAGERA project TRANS2DTMD and the Flemish Science Foundation (FWO-Vl) through a postdoc fellowship for S.P.M. The authors acknowledge useful discussions with W. Zihao and K. Novoselov. ; Approved Most recent IF: 10.8; 2020 IF: 12.712  
  Call Number UA @ admin @ c:irua:168685 Serial 6490  
Permanent link to this record
 

 
Author Tadić, M.; Arsoski, V.; Čukarić, N.; Peeters, F.M. url  openurl
  Title The optical excitonic Aharonov-Bohm effect in a few nanometer wide type-I nanorings Type A1 Journal article
  Year 2010 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal Acta Phys Pol A  
  Volume 117 Issue 6 Pages (down) 974-977  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The optical excitonic Aharonov-Bohm effect in type-1 three-dimensional (In, Ga)As/GaAs nanorings in theoretically explored. The single-particle states of the electron and the hole are extracted from the effective mass theory in the presence of inhomogeneous strain, and an exact numerical diagonalization approach is used to compute the exciton states and the oscillator strength fx for exciton recombination. We studied both the large lithographically-defined and small self-assembled rings. Only in smaller self-assembled nanorings we found optical excitonic AharonovBohm effect. Those oscillations are established by anticrossings between the optically active exciton states with zero orbital momentum. In lithographically defined rings, whose average radius is 33 nm, fx shows no oscillations, whereas in the smaller self-assembled nanoring with average radius of 11.5 nm oscillations in fx for the ground exciton state are found as function of the magnetic field that is superposed on a linear dependence. These oscillations are smeared out at finite temperature, thus photoluminescence intensity exhibits step-like variation with magnetic field even at temperature as small as 4.2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2010 IF: 0.467  
  Call Number UA @ lucian @ c:irua:84080 Serial 2474  
Permanent link to this record
 

 
Author Mogg, L.; Hao, G.-P.; Zhang, S.; Bacaksiz, C.; Zou, Y.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. url  doi
openurl 
  Title Atomically thin micas as proton-conducting membranes Type A1 Journal article
  Year 2019 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 14 Issue 10 Pages (down) 962-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons1,2. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons1. This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials3, which extends from ∼100 °C to 500 °C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm−2 at 500 °C, well above the current requirements for the industry roadmap4. We attribute the fast proton permeation to ~5-Å-wide tubular channels that perforate micas’ crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals5 with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488977100016 Publication Date 2019-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 37 Open Access  
  Notes ; The work was supported by the Lloyd's Register Foundation, the Engineering and Physical Sciences Research Council (EPSRC)-EP/N010345/1, EP/M010619/1 and EP/ P009050/1, the European Research Council, the Graphene Flagship and the Royal Society. M.L.-H. acknowledges a Leverhulme Early Career Fellowship, G.-P.H. acknowledges a Marie Curie International Incoming Fellowship, and L.M. acknowledges the EPSRC NOWNano programme for funding. Y.Z. acknowledges the assistance of Eric Prestat in TEM specimen preparation. Computational resources were provided by the TUBITAK ULAKBIM High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 38.986  
  Call Number UA @ admin @ c:irua:163589 Serial 5407  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Dynamics of kinematic vortices in a mesoscopic superconducting loop Type A1 Journal article
  Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 470 Issue 19 Pages (down) 946-948  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the time-dependent GinzburgLandau formalism, we study the dynamic properties of a submicron superconducting loop in applied current and in presence of a perpendicular magnetic field. The resistive state of the sample is caused by the motion of kinematic vortexantivortex pairs. Vortices and antivortices move in opposite directions to each other, perpendicularly to the applied drive, and the periodic creation and annihilation of such pairs results in periodic oscillations of the voltage across the sample. The dynamics of these kinematic pairs is strongly influenced by the applied magnetic field, which for high fields leads to the flow of just vortices. Kinematic vortices can be temporarily pinned inside the loop with observable trace in the voltage vs. time characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000282454400061 Publication Date 2010-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 9 Open Access  
  Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415  
  Call Number UA @ lucian @ c:irua:85039 Serial 777  
Permanent link to this record
 

 
Author Freire, J.A.K.; Studart, N.; Peeters, F.M.; Farias, G.A.; Freire, V.N. pdf  doi
openurl 
  Title Magnetic confinement of electrons into quantum wires and dots on a liquid helium surface Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, July 30-August 03, 2001, Prague, Czech Republic Abbreviated Journal Physica E  
  Volume 12 Issue 1-4 Pages (down) 946-949  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the possibility to laterally confine surface electrons on a liquid helium surface by inserting magnetic discs and stripes which generate nonhomogeneous magnetic field profiles. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000175206300233 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:95139 Serial 1864  
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M. doi  openurl
  Title Tunable quantum dots in bilayer graphene Type A1 Journal article
  Year 2007 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 7 Issue 4 Pages (down) 946-949  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000245600500017 Publication Date 2007-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 167 Open Access  
  Notes Approved Most recent IF: 12.712; 2007 IF: 9.627  
  Call Number UA @ lucian @ c:irua:64118 Serial 3745  
Permanent link to this record
 

 
Author Austing, D.G.; Payette, C.; Nair, S.V.; Yu, G.; Gupta, J.A.; Partoens, B.; Amaha, S.; Tarucha, S. doi  openurl
  Title Scheme for coherently quenching resonant current in a three-level quantum dot energy level mixer Type A1 Journal article
  Year 2009 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal  
  Volume 6 Issue 4 Pages (down) 940-943  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We outline a scheme to create a dark state by three-level mixing that is potentially a useful tool for quantum coherent transport. Magnetic-field-induced intra-dot level mixing can lead to rich quantum superposition phenomena between three approaching single-particle states in a quantum dot when probed by the ground state of an adjacent weakly coupled quantum dot in the single-electron resonant tunnelling regime. The mixing relies on non-negligible anharmonicity and anisotropy in confining potentials of realistic quantum dots. Anti-crossing and transfer of strengths between resonances can be understood with a simple coherent level mixing model. Superposition can lead to the formation of a dark state by complete cancellation of an otherwise strong resonance. This is an all-electrical analogue of coherent population trapping seen in three-level-systems from quantum and atom optics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000266597600040 Publication Date 2008-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6351;1610-1642; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:86927 Serial 2953  
Permanent link to this record
 

 
Author Misko, V.R.; Lin, N.S.; Peeters, F.M. pdf  doi
openurl 
  Title Unconventional dynamics of vortex shells in mesoscopic superconducting corbino disks Type A1 Journal article
  Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 470 Issue 19 Pages (down) 939-941  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The dynamics of vortex matter in mesoscopic superconducting Corbino disk is strongly influenced by the discrete vortex structure arranged in shells. While in previous works the vortex dynamics has been studied in large (macroscopic) and in very small mesoscopic disks (containing only few shells), in the intermediate-size regime it is much more complex and unusual, due to: (i) the competition between the vortexvortex interaction and confinement and (ii) (in)commensurability among the vortex shells. We found that the interplay between these effects can result in a very unusual vortex dynamical behavior: (i) unconventional angular melting (i.e., propagating from the boundary, where the shear stress is minimum, towards the center) and (ii) unconventional dynamics of shells (i.e., the inversion of shell velocities with respect to the gradient driving force). This unusual behavior is found for different number of shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000282454400059 Publication Date 2010-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415  
  Call Number UA @ lucian @ c:irua:85036 Serial 3799  
Permanent link to this record
 

 
Author Castelano, L.K.; Hai, G.Q.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Two vertically coupled quantum rings with tunneling Type A1 Journal article
  Year 2006 Publication Brazilian journal of physics Abbreviated Journal Braz J Phys  
  Volume 36 Issue 3b Pages (down) 936-939  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication São Paulo Editor  
  Language Wos 000242535600036 Publication Date 2006-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0103-9733; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.732 Times cited 2 Open Access  
  Notes Approved Most recent IF: 0.732; 2006 IF: 0.494  
  Call Number UA @ lucian @ c:irua:62133 Serial 3788  
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Van Aert, S.; Bals, S.; Verbeeck, J. pdf  doi
openurl 
  Title An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images Type A1 Journal article
  Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 106 Issue 10 Pages (down) 933-940  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab  
  Abstract We propose an improved image simulation procedure for atomic-resolution annular dark-field scanning transmission electron microscopy (STEM) based on the multislice formulation, which takes thermal diffuse scattering fully into account. The improvement with regard to the classical frozen phonon approach is realized by separating the lattice configuration statistics from the dynamical scattering so as to avoid repetitive calculations. As an example, the influence of phonon scattering on the image contrast is calculated and investigated. STEM image simulation of crystals can be applied with reasonable computing times to problems involving a large number of atoms and thick or large supercells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000240397200006 Publication Date 2006-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 18 Open Access  
  Notes Fwo; Fwo-V Approved Most recent IF: 2.843; 2006 IF: 1.706  
  Call Number UA @ lucian @ c:irua:87604UA @ admin @ c:irua:87604 Serial 876  
Permanent link to this record
 

 
Author Jalali, H.; Khoeini, F.; Peeters, F.M.; Neek-Amal, M. doi  openurl
  Title Hydration effects and negative dielectric constant of nano-confined water between cation intercalated MXenes Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue 2 Pages (down) 922-929  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using electrochemical methods a profound enhancement of the capacitance of electric double layer capacitor electrodes was reported when water molecules are strongly confined into the two-dimensional slits of titanium carbide MXene nanosheets [A. Sugahara et al., Nat. Commun., 2019, 10, 850]. We study the effects of hydration on the dielectric properties of nanoconfined water and supercapacitance properties of the cation intercalated MXene. A model for the electric double layer capacitor is constructed where water molecules are strongly confined in two-dimensional slits of MXene. We report an abnormal dielectric constant and polarization of nano-confined water between MXene layers. We found that by decreasing the ionic radius of the intercalated cations and in a critical hydration shell radius the capacitance of the system increases significantly (similar or equal to 200 F g(-1)) which can be interpreted as a negative permittivity. This study builds a bridge between the fundamental understanding of the dielectric properties of nanoconfined water and the capability of using MXene films for supercapacitor technology, and in doing so provides a solid theoretical support for recent experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610368100035 Publication Date 2020-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 3 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:176141 Serial 6690  
Permanent link to this record
 

 
Author Galvan Moya, J.E.; Nelissen, K.; Peeters, F.M. pdf  doi
openurl 
  Title Structural ordering of self-assembled clusters with competing interactions : transition from faceted to spherical clusters Type A1 Journal article
  Year 2015 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir  
  Volume 31 Issue 31 Pages (down) 917-924  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The self-assembly of nanoparticles into clusters and the effect of the different parameters of the competing interaction potential on it are investigated. For a small number of particles, the structural organization of the clusters is almost unaffected by the attractive part of the potential, and for an intermediate number of particles the configuration strongly depends on the strength of it. The cluster size is controlled by the range of the interaction potential, and the structural arrangement is guided by the strength of the potential: i.e., the self-assembled cluster transforms from a faceted configuration at low strength to a spherical shell-like structure at high strength. Nonmonotonic behavior of the cluster size is found by increasing the interaction range. An approximate analytical expression is obtained that predicts the smallest cluster for a specific set of potential parameters. A Mendeleev-like table is constructed for different values of the strength and range of the attractive part of the potential in order to understand the structural ordering of the ground-state configuration of the self-assembled clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000348689700005 Publication Date 2014-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 4 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.833; 2015 IF: 4.457  
  Call Number c:irua:125292 Serial 3243  
Permanent link to this record
 

 
Author Karapetrov, G.; Belkin, A.; Iavarone, M.; Fedor, J.; Novosad, V.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Anisotropic superconductivity and vortex dynamics in magnetically coupled F/S and F/S/F hybrids Type A1 Journal article
  Year 2011 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 24 Issue 1/2 Pages (down) 905-910  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetically coupled superconductorferromagnet hybrids offer advanced routes for nanoscale control of superconductivity. Magnetotransport characteristics and scanning tunneling microscopy images of vortex structures in superconductorferromagnet hybrids reveal rich superconducting phase diagrams. Focusing on a particular combination of a ferromagnet with a well-ordered periodic magnetic domain structure with alternating out-of-plane component of magnetization, and a small coherence length superconductor, we find directed nucleation of superconductivity above the domain wall boundaries. We show that near the superconductor-normal state phase boundary the superconductivity is localized in narrow mesoscopic channels. In order to explore the Abrikosov flux line ordering in F/S hybrids, we use a combination of scanning tunneling microscopy and GinzburgLandau simulations. The magnetic stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinninganti-pinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-1D arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. In F/S/F hybrids we demonstrate the evolution of the anisotropic conductivity in the superconductor that is magnetically coupled with two adjacent ferromagnetic layers. Stripe magnetic domain structures in both F-layers are aligned under each other, resulting in a directional superconducting order parameter in the superconducting layer. The conductance anisotropy strongly depends on the period of the magnetic domains and the strength of the local magnetization. The anisotropic conductivity of up to three orders of magnitude can be achieved with a spatial critical temperature modulation of 5% of T c. Induced anisotropic properties in the F/S and F/S/F hybrids have a potential for future application in switching and nonvolatile memory elements operating at low temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000289855700150 Publication Date 2010-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939;1557-1947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.18 Times cited 2 Open Access  
  Notes ; This work as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory were supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work was also supported by the Ministry of Education, Agency for Structural Funds of the European Union, Research and Development Program, under agreement 262 401 200 19. M.V.M. and F. M. P. acknowledge support from the Flemish Science Foundation (FWO-VI), the Belgian Science Policy, the JSPS/ESF-NES program, the ESF-AQDJJ network, and the Vlaanderen-USA bilateral program. ; Approved Most recent IF: 1.18; 2011 IF: 0.650  
  Call Number UA @ lucian @ c:irua:89930 Serial 130  
Permanent link to this record
 

 
Author Ibrahim, I.S.; Schweigert, V.A.; Peeters, F.M. doi  openurl
  Title Electrical transport through magnetic barriers Type A1 Journal article
  Year 1998 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 2 Issue Pages (down) 899-903  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000075383500184 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.221 Times cited Open Access  
  Notes Approved Most recent IF: 2.221; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:24187 Serial 896  
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yuecelen, E.; Lievens, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic scale dynamics of ultrasmall germanium clusters Type A1 Journal article
  Year 2012 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 3 Issue 897 Pages (down) 897  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306099900024 Publication Date 2012-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 90 Open Access  
  Notes Fwo; Iap; Iwt Approved Most recent IF: 12.124; 2012 IF: 10.015  
  Call Number UA @ lucian @ c:irua:100340 Serial 183  
Permanent link to this record
 

 
Author Connolly, M.R.; Bemding, S.J.; Milošević, M.V.; Clem, J.R.; Tamegai, T. doi  openurl
  Title Continuum versus discrete flux behaviour in large mesoscopic Bi2Sr2CaCu2O8+\delta disks Type A1 Journal article
  Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 470 Issue S:1 Pages (down) S896-S897  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have used scanning Hall probe and local Hall magnetometry measurements to map flux profiles in superconducting Bi2Sr2CaCu2O8+δ disks whose diameters span the crossover between the bulk and mesoscopic vortex regimes. The behaviour of large disks (greater-or-equal, slanted20 μm diameter) is well described by analytic models that assume a continuous distribution of flux in the sample. Small disks (less-than-or-equals, slant10 μm diameter), on the other hand, exhibit clear signatures of the underlying discrete vortex structure as well as competition between triangular Abrikosov ordering and the formation of shell structures driven by interactions with circulating edge currents. At low fields we are able to directly observe the characteristic mesoscopic compression of vortex clusters which is linked to oscillations in the diameter of the vortex dome in increasing magnetic fields. At higher fields, where single vortex resolution is lost, we are still able to track configurational changes in the vortex patterns, since competing vortex orders impose unmistakable signatures on local magnetisation curves. Our observations are in excellent agreement with molecular-dynamics numerical simulations which lead us to a natural definition of the lengthscale for the crossover between discrete and continuum behaviour in our system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000286075700384 Publication Date 2009-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.404 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415  
  Call Number UA @ lucian @ c:irua:88069 Serial 494  
Permanent link to this record
 

 
Author Vansant, P.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T. openurl 
  Title Excited states of the one-dimensional bipolaron in the strong coupling limit Type A3 Journal article
  Year 1994 Publication Bulletin of the American Physical Society Abbreviated Journal  
  Volume 39 Issue Pages (down) 889  
  Keywords A3 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-0503 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:20365 Serial 1109  
Permanent link to this record
 

 
Author Tadic; Peeters, F.M. pdf  doi
openurl 
  Title Electronic structure of the valence band in cylindrical strained InP/InGaP quantum dots in an external magnetic field Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, July 30-August 03, 2001, Prague, Czech Republic Abbreviated Journal Physica E  
  Volume 12 Issue 1-4 Pages (down) 880-883  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The multiband effective-mass model of cylindrical self-assembled quantum dots in a magnetic field normal to the layer of the quantum dots is presented. The strain distribution is computed by the valence force field method. The strain-dependent multiband Hamiltonian is modified into an axially symmetric form, which commutes with the total angular momentum F-2 = fh. where f denotes the total magnetic quantum number. The heavy hole and the light hole parts in the mixed hole state are resolved. It is found that the heavy hole component dominates in the ground states for both f = 1/2 and 3/2. The electronic structure exhibits numerous anticrossings between the hole levels. The Zeeman splitting between the +\f\ and -\f\ states is also computed. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000175206300217 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:95138 Serial 1016  
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; Croitoru, M. pdf  doi
openurl 
  Title Atomic resolution electron tomography: a dream? Type A1 Journal article
  Year 2006 Publication International journal of materials research Abbreviated Journal Int J Mater Res  
  Volume 97 Issue 7 Pages (down) 872-879  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000239916700003 Publication Date 2013-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-5282;2195-8556; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.681 Times cited 6 Open Access  
  Notes Approved Most recent IF: 0.681; 2006 IF: NA  
  Call Number UA @ lucian @ c:irua:60965 Serial 176  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Gorlé, C.D.; Germonpré, P.; Partoens, B.; Wuyts, F.L.; Parizel, P.M.; de Backer, W. doi  openurl
  Title Flow analyses in the lower airways: patient-specific model and boundary conditions Type A1 Journal article
  Year 2008 Publication Medical engineering and physics Abbreviated Journal Med Eng Phys  
  Volume 30 Issue 7 Pages (down) 872-879  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Computational fluid dynamics (CFD) is increasingly applied in the respiratory domain. The ability to simulate the flow through a bifurcating tubular system has increased the insight into the internal flow dynamics and the particular characteristics of respiratory flows such as secondary motions and inertial effects. The next step in the evolution is to apply the technique to patient-specific cases, in order to provide more information about pathological airways. This study presents a patient-specific approach where both the geometry and the boundary conditions (BC) are based on individual imaging methods using computed tomography (CT). The internal flow distribution of a 73-year-old female suffering from chronic obstructive pulmonary disease (COPD) is assessed. The validation is performed through the comparison of lung ventilation with gamma scintigraphy. The results show that in order to obtain agreement within the accuracy limits of the gamma scintigraphy scan, both the patient-specific geometry and the BC (driving pressure) play a crucial role. A minimal invasive test (CT scan) supplied enough information to perform an accurate CFD analysis. In the end it was possible to capture the pathological features of the respiratory system using the imaging and computational fluid dynamics techniques. This brings the introduction of this new technique in the clinical practice one step closer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000259768300009 Publication Date 2007-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4533; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.819 Times cited 82 Open Access  
  Notes Approved Most recent IF: 1.819; 2008 IF: 2.216  
  Call Number UA @ lucian @ c:irua:71693 Serial 1224  
Permanent link to this record
 

 
Author Romaguera, A.R. de C.; Doria, M.M.; Peeters, F.M. doi  openurl
  Title Vortex patterns in a superconducting-ferromagnetic rod Type A1 Journal article
  Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 470 Issue 19 Pages (down) 871-873  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A superconducting rod with a magnetic moment on top develops vortices obtained here through 3D calculations of the GinzburgLandau theory. The inhomogeneity of the applied field brings new properties to the vortex patterns that vary according to the rod thickness. We find that for thin rods (disks) the vortex patterns are similar to those obtained in presence of a homogeneous magnetic field instead because they consist of giant vortex states. For thick rods novel patterns are obtained as vortices are curve lines in space that exit through the lateral surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000282454400039 Publication Date 2010-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415  
  Call Number UA @ lucian @ c:irua:85035 Serial 3878  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Adsorption of small molecules on graphene Type A1 Journal article
  Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 40 Issue 4/5 Pages (down) 860-862  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the adsorption process of small molecules on graphene through first-principles calculations and show the presence of two main charge transfer mechanisms. Which mechanism is the dominant one depends on the magnetic properties of the adsorbing molecules. We explain these mechanisms through the density of states of the system and the molecular orbitals of the adsorbates, and demonstrate the possible difficulties in calculating the charge transfer from first principles between a graphene sheet and a molecule. Our results are in good agreement with experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos 000265870200058 Publication Date 2008-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.163 Times cited 116 Open Access  
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778  
  Call Number UA @ lucian @ c:irua:77030 Serial 65  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: