toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shakouri, K.; Masir, M.R.; Jellal, A.; Choubabi, E.B.; Peeters, F.M. url  doi
openurl 
  Title Effect of spin-orbit couplings in graphene with and without potential modulation Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 11 Pages 115408-115409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the effect of Rashba and intrinsic spin-orbit couplings on the electronic properties and spin configurations of Dirac fermions confined in: (i) a flat graphene sheet, (ii) a graphene wire with p-n-p structure, and (iii) a superlattice of graphene wires. The interplay between the spin-orbit interaction mechanisms breaks the electron-hole symmetry and the spin configuration induced by Rashba spin-orbit coupling lacks inversion symmetry in k space. We show that the Rashba spin-orbit interaction doubles the Fabry-Perot resonant modes in the transmission spectrum of a graphene wire and opens new channels for the electron transmission. Moreover, it leads to the appearance of spin split extra Dirac cones in the energy spectrum of a graphene superlattice. It is shown that the spin of the electrons and holes confined in a flat graphene sheet is always perpendicular to their motion while this is not the case for the other nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000323944600005 Publication Date 2013-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 36 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by A.J. and E.B.C. They also thank the Deanship of Scientific Research at King Faisal University for funding this work under the Project No. 130193. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:110716 Serial 836  
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Infrared to terahertz optical conductivity of n-type and p-type monolayer MoS2 in the presence of Rashba spin-orbit coupling Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 155432  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the effect of Rashba spin-orbit coupling (SOC) on the optoelectronic properties of n- and p-type monolayer MoS2. The optical conductivity is calculated within the Kubo formalism. We find that the spin-flip transitions enabled by the Rashba SOC result in a wide absorption window in the optical spectrum. Furthermore, we evaluate the effects of the polarization direction of the radiation, temperature, carrier density, and the strength of the Rashba spin-orbit parameter on the optical conductivity. We find that the position, width, and shape of the absorption peak or absorption window can be tuned by varying these parameters. This study shows that monolayer MoS2 can be a promising tunable optical and optoelectronic material that is active in the infrared to terahertz spectral range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386097800003 Publication Date 2016-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 20 Open Access  
  Notes ; Y.M.X. acknowledges financial support from the China Scholarship Council (CSC). This work was also supported by the National Natural Science Foundation of China (Grant No. 11574319), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. B.V.D. is supported by a Ph.D. fellowship from the Flemish Science Foundation. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:138175 Serial 4355  
Permanent link to this record
 

 
Author Zarenia, M.; Conti, S.; Peeters, F.M.; Neilson, D. pdf  doi
openurl 
  Title Coulomb drag in strongly coupled quantum wells : temperature dependence of the many-body correlations Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 115 Issue 20 Pages 202105  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the effect of the temperature dependence of many-body correlations on hole-hole Coulomb drag in strongly coupled GaAs/GaAlAs double quantum wells. For arbitrary temperatures, we obtained the correlations using the classical-map hypernetted-chain approach. We compare the temperature dependence of the resulting drag resistivities rho D(T) at different densities with rho D(T) calculated assuming correlations fixed at zero temperature. Comparing the results with those when correlations are completely neglected, we confirm that correlations significantly increase the drag. We find that the drag becomes sensitive to the temperature dependence of T greater than or similar to 2TF, twice the Fermi temperature. Our results show excellent agreement with available experimental data. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000498619400007 Publication Date 2019-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 1 Open Access  
  Notes Approved Most recent IF: 3.411  
  Call Number UA @ admin @ c:irua:165135 Serial 6291  
Permanent link to this record
 

 
Author Leao, S.A.; Hipolito, O.; Peeters, F.M. doi  openurl
  Title Inter and intrasubband transitions via lo phonons in quantum wires Type A1 Journal article
  Year 1993 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst  
  Volume 13 Issue 1 Pages 37-40  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the effects of the finite confining potential V0 on the absorption and emission scattering rates of electrons interacting with LO phonons for a cylindrical GaAs quantum wire. The emission rates are qualitatively similar to those of the 2D case. The absorption rates on the other hand exhibit two different regimes: 1) for a wire radius smaller than a certain value (80 Å in the case where V0 = 190 meV) the behavior is similar to the 2D and 3D analogues, but 2) for larger radius the absorption rates initially increase with increasing energy, reach a maximum value and then decrease monotonicaly. A complete study is made as a function of wire radius, and electron energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1993KK13700007 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.097 Times cited 8 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:103011 Serial 1680  
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Tempere, J.; Nori, F. url  doi
openurl 
  Title Pattern formation in vortex matter with pinning and frustrated intervortex interactions Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 104519  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the effects related to vortex-core deformations when vortices approach each other. As a result of these vortex-core deformations, the vortex-vortex interaction effectively acquires an attractive component leading to a variety of vortex patterns typical for systems with nonmonotonic repulsive-attractive interaction, such as stripes and labyrinths. The core deformations are anisotropic and can induce frustration in the vortex-vortex interaction. In turn, this frustration has an impact on the resulting vortex patterns, which are analyzed in the presence of additional random pinning, as a function of the pinning strength. This analysis can be applicable to vortices in multiband superconductors or to vortices in Bose-Einstein condensates.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000399138800006 Publication Date 2017-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; We acknowledge fruitful discussions with E. Babaev and V. Gladilin. This work is partially supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20150595), the National Natural Science Foundation of China (Grants No. NSFC-U1432135, No. 11611140101, and No. 11674054), the “Odysseus” program of the Flemish Government and Flemish Research Foundation (FWO-Vl), the Flemish Research Foundation (through Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N), the Research Fund of the University of Antwerp, the RIKEN iTHES Project, the MURI Center for Dynamic Magneto-Optics via the AFOSR Award No. FA9550-14-1-0040, the IMPACT program of JST, a Grant-in-Aid for Scientific Research (A), the Japan Society for the Promotion of Science (KAKENHI), CREST, and a grant from the John Templeton Foundation. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:142429 Serial 4602  
Permanent link to this record
 

 
Author Topalovic, D.B.; Arsoski, V.V.; Tadic, M.Z.; Peeters, F.M. url  doi
openurl 
  Title Confined electron states in two-dimensional HgTe in magnetic field : quantum dot versus quantum ring behavior Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 100 Issue 12 Pages 125304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the electron states and optical absorption in square- and hexagonal-shaped two-dimensional (2D) HgTe quantum dots and quantum rings in the presence of a perpendicular magnetic field. The electronic structure is modeled by means of the sp(3)d(5)s* tight-binding method within the nearest-neighbor approximation. Both bulklike and edge states appear in the energy spectrum. The bulklike states in quantum rings exhibit Aharonov-Bohm oscillations in magnetic field, whereas no such oscillations are found in quantum dots, which is ascribed to the different topology of the two systems. When magnetic field varies, all the edge states in square quantum dots appear as quasibands composed of almost fully flat levels, whereas some edge states in quantum rings are found to oscillate with magnetic field. However, the edge states in hexagonal quantum dots are localized like in rings. The absorption spectra of all the structures consist of numerous absorption lines, which substantially overlap even for small line broadening. The absorption lines in the infrared are found to originate from transitions between edge states. It is shown that the magnetic field can be used to efficiently tune the optical absorption of HgTe 2D quantum dot and quantum ring systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486638400007 Publication Date 2019-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; This work was supported by Projects No. III 41028, No. III 42008, and No. III 45003 funded by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:162787 Serial 5409  
Permanent link to this record
 

 
Author Topalovic, D.B.; Arsoski, V.V.; Tadic, M.Z.; Peeters, F.M. pdf  doi
openurl 
  Title Asymmetric versus symmetric HgTe/CdxHg1-x Te double quantum wells: Bandgap tuning without electric field Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 128 Issue 6 Pages 064301-64308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the electron states in double asymmetric HgTe / Cd x Hg 1 – x Te quantum wells grown along the [ 001 ] direction. The subbands are computed by means of the envelope function approximation applied to the eight-band Kane k . mml:mspace width=“.1em”mml:mspace p model. The asymmetry of the confining potential of the double quantum wells results in a gap opening, which is absent in the symmetric system where it can only be induced by an applied electric field. The bandgap and the subbands are affected by spin-orbit coupling, which is a consequence of the asymmetry of the confining potential. The electron-like and hole-like states are mainly confined in different quantum wells, and the enhanced hybridization between them opens a spin-dependent hybridization gap at a finite in-plane wavevector. We show that both the ratio of the widths of the two quantum wells and the mole fraction of the C d x H g 1 – x Te barrier control both the energy gap between the hole-like states and the hybridization gap. The energy subbands are shown to exhibit inverted ordering, and therefore, a nontrivial topological phase could emerge in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561339300001 Publication Date 2020-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited 3 Open Access  
  Notes ; This research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:171146 Serial 6453  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Extra Dirac points in the energy spectrum for superlattices on single-layer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 7 Pages 075438,1-075438,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the emergence of extra Dirac points in the electronic structure of a periodically spaced barrier system, i.e., a superlattice, on single-layer graphene, using a Dirac-type Hamiltonian. Using square barriers allows us to find analytic expressions for the occurrence and location of these new Dirac points in k space and for the renormalization of the electron velocity near them in the low-energy range. In the general case of unequal barrier and well widths the new Dirac points move away from the Fermi level and for given heights of the potential barriers there is a minimum and maximum barrier width outside of which the new Dirac points disappear. The effect of these extra Dirac points on the density of states and on the conductivity is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000274998200133 Publication Date 2010-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 211 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Brazilian Council for Research (CNPq), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81767 Serial 1159  
Permanent link to this record
 

 
Author Grujić, M.; Zarenia, M.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Interband optical absorption in a circular graphene quantum dot Type A1 Journal article
  Year 2012 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume T149 Issue Pages 014056-014056,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the energy levels and optical properties of a circular graphene quantum dot in the presence of an external magnetic field perpendicular to the dot. Based on the Dirac-Weyl equation and assuming zero outward current at the edge of the dot we present the results for two different types of boundary conditions, i.e. infinite-mass (IMBC) and zigzag boundary conditions. We found that the dot with zigzag edges displays a zero-energy state in the energy spectra while this is not the case for the IMBCs. For both boundary conditions, the confinement becomes dominated by the magnetic field, where the energy levels converge to the Landau levels as the magnetic field increases. The effect of boundary conditions on the electron-and hole-energy states is found to affect the interband absorption spectra, where we found larger absorption in the case of IMBCs. The selection rules for interband optical transitions are determined and discussed for both boundary conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000303523500057 Publication Date 2012-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 5 Open Access  
  Notes ; This work was supported by the EuroGraphene program of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.28; 2012 IF: 1.032  
  Call Number UA @ lucian @ c:irua:99136 Serial 1688  
Permanent link to this record
 

 
Author Chen, Q.; Li, L.L.; Peeters, F.M. pdf  url
doi  openurl
  Title Inner and outer ring states of MoS2 quantum rings : energy spectrum, charge and spin currents Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 24 Pages 244303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the energy levels and persistent currents of MoS2 quantum rings having different shapes and edge types in the presence of a perpendicular magnetic field by means of the tight-binding approach. We find states localized at the inner and outer boundaries of the ring. These energy levels exhibit different magnetic field dependences for the inner and outer ring states due to their different localization properties. They both exhibit the usual Aharanov-Bohm oscillations but with different oscillation periods. In the presence of spin-orbit coupling, we show distinct spin and charge persistent currents for inner and outer ring states. We find well-defined spin currents with negligibly small charge currents. This is because the local currents of spin-up and -down states flow in opposite directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000474439600026 Publication Date 2019-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 10 Open Access  
  Notes ; This work was supported by the Hunan Provincial Natural Science Foundation of China (Nos. 2015JJ2040, 2018JJ2080, and 2018JJ4047), the National Natural Science Foundation of China (NNSFC) (No. 51502087), the Scientific Research Fund of Hunan Provincial Education Department (Nos. 15A042, 15B056, and 17B060), and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:161309 Serial 5417  
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K. pdf  doi
openurl 
  Title Theory of trions in quantum wells Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, JUL 30-AUG 03, 2001, PRAGUE, CZECH REPUBLIC Abbreviated Journal Physica E  
  Volume 12 Issue 1-4 Pages 543-545  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the energy levels of the negatively and positively charged excitons (also called trions) in a 200 Angstrom wide GaAs quantum well in the presence of a perpendicular magnetic field. A comparison is made with the experimental results of Glasberg et al. (Phys. Rev. B. 59 (1999) R10 425) and of Yusa et al. (cond-mat/0103505). (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000175206300134 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:103903 Serial 3624  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Electrical dipole on gapped graphene : bound states and atomic collapse Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 16 Pages 165420  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the energy spectrum, wave functions, and local density of states of an electrical dipole placed on a sheet of gapped graphene as function of the charge strength Z alpha for different sizes of the dipole and for different regularization parameters. The dipole is modeled as consisting of a positive and negative charge. Bound states are found within the gap region with some energy levels that anticross and others that cross as function of the impurity strength Z alpha. The anticrossings are more pronounced and move to higher charges Z alpha when the length of the dipole decreases. These energy levels turn into atomic collapse states when they enter the positive (or negative) energy continuum. A smooth transition from the single-impurity behavior to the dipole one is observed: The states diving towards the continuum in the single-impurity case are gradually replaced by a series of anticrossings that represent a continuation of the diving states in the single-impurity case. By studying the local density of states at the edge of the dipole we show how the series of anticrossings persist in the positive and negative continuum.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000447302700010 Publication Date 2018-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research grant for R.V.P. and a postdoctoral grant for B.V.D. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:154728UA @ admin @ c:irua:154728 Serial 5094  
Permanent link to this record
 

 
Author Dantas, D.S.; Chaves, A.; Farias, G.A.; Ramos, A.C.A.; Peeters, F.M. pdf  doi
openurl 
  Title Low-dimensional confining structures on the surface of helium films suspended on designed cavities Type A1 Journal article
  Year 2013 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 173 Issue 3-4 Pages 207-226  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the formation of quantum confined structures on the surface of a liquid helium film suspended on a nanostructured substrate. We show theoretically that, by nanostructuring the substrate, it is possible to change the geometry of the liquid helium surface, opening the possibility of designing and controlling the formation of valleys with different shapes. By applying an external electric field perpendicular to the substrate plane, surface electrons can be trapped into these valleys, as in a quantum dot. We investigate how the external parameters, such as the electric field strength and the height of the liquid helium bath, can be tuned to control the energy spectrum of the trapped surface electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000324820300008 Publication Date 2013-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited 1 Open Access  
  Notes ; This work has received financial support from the Brazilian National Research Council (CNPq), Fundacao Cearense de Apoio ao Desenvolvimento Cientifico e Tecnologico (Funcap), CAPES and Pronex/CNPq/Funcap. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the bilateral project between CNPq and FWO-Vl. ; Approved Most recent IF: 1.3; 2013 IF: 1.036  
  Call Number UA @ lucian @ c:irua:111140 Serial 1845  
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M. url  doi
openurl 
  Title Correlated few-particle states in artificial bipolar molecule Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue 23 Pages 233302-233304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the ground and excited states of a bipolar artificial molecule composed of two vertically coupled quantum dots containing different type of carriers-electrons and holes-in equilibrium. The approach based on exact diagonalization is used and reveals an intricate pattern of ground-state angular momentum switching and a rearrangement of approximate single-particle levels as a function of the interdot coupling strength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000176767900019 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:104154 Serial 519  
Permanent link to this record
 

 
Author Silva, F.C.O.; Menezes, R.M.; Cabral, L.R.E.; de Souza Silva, C.C. doi  openurl
  Title Formation and stability of conformal spirals in confined 2D crystals Type A1 Journal article
  Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 32 Issue 50 Pages 505401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the ground-state and dynamical properties of nonuniform two-dimensional (2D) clusters of long-range interacting particles. We demonstrate that, when the confining external potential is designed to produce an approximate 1/ r 2 density profile, the particles crystallize into highly ordered structures featuring spiral crystalline lines. Despite the strong inhomogeneity of the observed configurations, most of them are characterized by small density of topological defects, typical of conformal crystals, and the net topological charge induced by the simply-connected geometry of the system is concentrated near the cluster center. These crystals are shown to be robust with respect to thermal fluctuations up to a certain threshold temperature, above which the net charge is progressively redistributed from the center to the rest of the system and the topological order is lost. The crystals are also resilient to the shear stress produced by a small nonuniform azimuthal force field, rotating as a rigid body (RB). For larger forces, topological defects proliferate and the RB rotation gives place to plastic flow.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record  
  Impact Factor 2.7 Times cited Open Access  
  Notes Approved Most recent IF: 2.7; 2020 IF: 2.649  
  Call Number UA @ admin @ c:irua:191093 Serial 7978  
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P. url  doi
openurl 
  Title Electrical and thermal-properties of a 2-dimensional electron-gas in a one-dimensional periodic potential Type A1 Journal article
  Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 46 Issue 8 Pages 4667-4680  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the influence of a periodic weak modulation along the x direction on the electrical and thermal properties of a two-dimensional electron gas in the presence of a perpendicular magnetic field. The modulation lifts the degeneracy of the Landau levels and leads to one-dimensional magnetic bands whose bandwidth oscillates as a function of the magnetic field. At weak magnetic fields this gives rise to the Weiss oscillations in the magnetoresistance, discovered recently, which have a very weakly temperature-dependent amplitude and a period proportional to square-root n(e), when n(e) is the electron density. Diffusion-current contributions, proportional to the square of the bandwidth, dominate rho(xx), and collisional contributions, varying approximately as the square of the density of states, dominate rho(yy). The result is that rho(xx) and rho(yy) oscillate out of phase as observed. Asymptotic analytical expressions are presented for the conductivity tensor. Similar oscillations, of much smaller amplitude, occur in the thermodynamic quantities, such as the magnetization, the susceptibility, and the specific heat. We also predict oscillations in the Hall resistance, the cyclotron resonance position, the linewidth, as well as in the thermal conductivity and thermopower. The components of the thermal-resistance tensor have a magnetic-field dependence similar to that of the electrical-resistivity tensor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1992JK72500032 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 148 Open Access  
  Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #  
  Call Number UA @ lucian @ c:irua:103028 Serial 889  
Permanent link to this record
 

 
Author Li, B.; Djotyan, A.P.; Hao, Y.L.; Avetisyan, A.A.; Peeters, F.M. url  doi
openurl 
  Title Effect of a perpendicular magnetic field on the shallow donor states near a semiconductor-metal interface Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 7 Pages 075313-75319  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the influence of an external perpendicular magnetic field on the lowest-energy states of an electron bound to a donor which is located near a semiconductor-metal interface. The problem is treated within the effective mass approach and the lowest-energy states are obtained through (1) the “numerically exact” finite element method, and (2) a variational approach using a trial wave function where all image charges that emerge due to the presence of the metallic gate are taken into account. The trial wave functions are constructed such that they reduce to an exponential behavior for sufficiently small magnetic fields and become Gaussian for intermediate and large magnetic fields. The average electron-donor distance can be controlled by the external magnetic field. We find that the size of the 2p(z) state depends strongly on the magnetic field when the donor is close to the interface, showing a nonmonotonic behavior, in contrast with the ground and the other excited states. DOI: 10.1103/PhysRevB.87.075313  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314874800017 Publication Date 2013-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107664 Serial 793  
Permanent link to this record
 

 
Author Liu, Y.; Cheng, F.; Li, X.J.; Peeters, F.M.; Chang, K. doi  openurl
  Title Tuning of anisotropy in two-electron quantum dots by spin-orbit interactions Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 3 Pages 032102,1-032102,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the influence of the spin-orbit interactions (SOIs) on the electron distribution and the optical absorption of a two-electron quantum dot. It is shown that the interplay between the SOIs makes the two-electron quantum dot behave like two laterally coupled quantum dots and the anisotropic distribution can be rotated from [110] to [11®0] by reversing the direction of the perpendicular electric field and detect it through the optical absorption spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000293679000026 Publication Date 2011-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes ; This work was supported by NSFC Grants No. 16760525405, 10874175 and 11004017 and the Belgian Science Policy 168(IAP). ; Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:92473 Serial 3749  
Permanent link to this record
 

 
Author Couet, S.; Peelaers, H.; Trekels, M.; Houben, K.; Petermann, C.; Hu, M.Y.; Zhao, J.Y.; Bi, W.; Alp, E.E.; Menéndez, E.; Partoens, B.; Peeters, F.M.; Van Bael, M.J.; Vantomme, A.; Temst, K.; url  doi
openurl 
  Title Interplay between lattice dynamics and superconductivity in Nb3Sn thin films Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 4 Pages 045437-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the link between superconductivity and atomic vibrations in Nb3Sn films with a thickness ranging from 10 to 50 nm. The challenge of measuring the phonon density of states (PDOS) of these films has been tackled by employing the technique of nuclear inelastic scattering by Sn-119 isotopes to reveal the Sn-partial phonon density of states. With the support of ab initio calculations, we evaluate the effect of reduced film thickness on the PDOS. This approach allows us to estimate the changes in superconducting critical temperature T-c induced by phonon confinement, which turned out to be limited to a few tenths of K. The presented method is successful for the Nb3Sn system and paves the way for more systematic studies of the role of phonon confinement in Sn-containing superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000322529900004 Publication Date 2013-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; The authors would like to cordially thank Dr. Rudolf Ruffer from the nuclear resonant scattering group of the ESRF for the support and gratefully acknowledge the ESRF for providing beamtime for the preliminary phonon study. S. C., K. H., and E. M. thank the Flemish Science Foundation (FWO-Vl) for their personal fellowship. This work was supported by FWO-Vl, the Methusalem program of the Flemish government, and the Concerted Research Action program (GOA/09/ 006) and (GOA/14/007). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109801 Serial 1702  
Permanent link to this record
 

 
Author Milovanovic, S.P.; Masir, M.R.; Peeters, F.M. pdf  doi
openurl 
  Title Bilayer graphene Hall bar with a pn-junction Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 114 Issue 11 Pages 113706  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the magnetic field dependence of the Hall and the bend resistances for a ballistic Hall bar structure containing a pn-junction sculptured from a bilayer of graphene. The electric response is obtained using the billiard model, and we investigate the cases of bilayer graphene with and without a band gap. Two different conduction regimes are possible: (i) both sides of the junction have the same carrier type and (ii) one side of the junction is n-type while the other one is p-type. The first case shows Hall plateau-like features in the Hall resistance that fade away as the band gap opens. The second case exhibits a bend resistance that is asymmetric in magnetic field as a consequence of snake states along the pn-interface, where the maximum is shifted away from zero magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000324827200031 Publication Date 2013-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:111169 Serial 234  
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M., Jr.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Snake states in graphene quantum dots in the presence of a p-n junction Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 3 Pages 035426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the magnetic interface states of graphene quantum dots that contain p-n junctions. Within a tight-binding approach, we consider rectangular quantum dots in the presence of a perpendicular magnetic field containing p-n as well as p-n-p and n-p-n junctions. The results show the interplay between the edge states associated with the zigzag terminations of the sample and the snake states that arise at the p-n junction due to the overlap between electron and hole states at the potential interface. Remarkable localized states are found at the crossing of the p-n junction with the zigzag edge having a dumb-bell-shaped electron distribution. The results are presented as a function of the junction parameters and the applied magnetic flux. DOI: 10.1103/PhysRevB.87.035426  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313941000003 Publication Date 2013-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:110087 Serial 3048  
Permanent link to this record
 

 
Author Tarakina, N.V.; Verberck, B. doi  openurl
  Title Tubular fullerenes in carbon nanotubes Type A1 Journal article
  Year 2012 Publication Fullerenes, nanotubes, and carbon nanostructures Abbreviated Journal Fuller Nanotub Car N  
  Volume 20 Issue 4-7 Pages 538-542  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the optimal orientations and positions of tubular fullerene molecules C-70, C-80 and C-90 encapsulated in single-walled carbon nanotubes (SWCNTs). We find that increasing the tube radius leads to the following succession of energetically stable regimes: 1) lying molecules positioned on the tube's long axis, 2) tilted molecules on the tube's long axis and 3) lying molecules shifted away from the tube's long axis. In the case of C-70 and C-80 molecules, standing on-axis configurations also occur. Our findings are relevant for the possible application of molecular-orientation-dependent electronic properties of fullerene nanopeapods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304297500045 Publication Date 2012-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1536-383X;1536-4046; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.35 Times cited Open Access  
  Notes ; This work was financially supported by the Research Foundation – Flanders (FWO-Vl). B. V. is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO-Vl). ; Approved Most recent IF: 1.35; 2012 IF: 0.764  
  Call Number UA @ lucian @ c:irua:99004 Serial 3737  
Permanent link to this record
 

 
Author Freire, J.A.K.; Studart, N.; Peeters, F.M.; Farias, G.A.; Freire, V.N. pdf  doi
openurl 
  Title Magnetic confinement of electrons into quantum wires and dots on a liquid helium surface Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, July 30-August 03, 2001, Prague, Czech Republic Abbreviated Journal Physica E  
  Volume 12 Issue 1-4 Pages 946-949  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the possibility to laterally confine surface electrons on a liquid helium surface by inserting magnetic discs and stripes which generate nonhomogeneous magnetic field profiles. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000175206300233 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:95139 Serial 1864  
Permanent link to this record
 

 
Author Pereira, J.M., Jr.; Mlinar, V.; Peeters, F.M.; Vasilopoulos, P. openurl 
  Title Graphene-based quantum wires Type P1 Proceeding
  Year 2007 Publication AIP conference proceedings T2 – 28th International Conference on the Physics of Semiconductors (ICPS-28), JUL 24-28, 2006, Vienna, AUSTRIA Abbreviated Journal  
  Volume Issue Pages 721-722  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the properties of carriers in graphene-based quantum wires created by potential barriers, by means of analytical and numerical calculations. We obtain expressions for the energy spectrum as a function of barrier height, well width and linear momentum along the wire. The results demonstrate a direction-dependent resonant transmission across the potential well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 893 Series Issue Edition  
  ISSN 978-0-7354-0397-0; 0094-243x ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103601 Serial 1369  
Permanent link to this record
 

 
Author Matsubara, M.; Saniz, R.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Doping anatase TiO2with group V-b and VI-b transition metal atoms: a hybrid functional first-principles study Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 19 Pages 1945-1952  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the role of transition metal atoms of group V-b (V, Nb, Ta) and VI-b (Cr, Mo, W) as n- or p-type dopants in anatase TiO$2$ using thermodynamic

principles and density functional theory with the Heyd-Scuseria-Ernzerhof HSE06 hybrid functional. The HSE06 functional provides a realistic value for the band gap, which ensures a correct classification of dopants as shallow or deep donors or acceptors. Defect formation energies and thermodynamic transition levels are calculated taking into account the constraints imposed by the stability of TiO$
2$ and the solubility limit of the impurities.

Nb, Ta, W and Mo are identified as shallow donors. Although W provides two electrons, Nb and Ta show a considerable lower formation energy, in particular under O-poor conditions. Mo donates in principle one electron, but under specific conditions can turn into a double donor. V impurities are deep donors and Cr

shows up as an amphoteric defect, thereby acting as an electron trapping center in n-type TiO$_2$ especially under O-rich conditions. A comparison with the available experimental data yields excellent agreement.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000394426400027 Publication Date 2016-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 19 Open Access OpenAccess  
  Notes We gratefully acknowledge financial support from the IWTVlaanderenthrough projects G.0191.08 and G.0150.13, and the BOF-NOI of the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation. M. M. acknowledges financial support from the GOA project ‘‘XANES meets ELNES’’ of the University of Antwerp. Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @ c:irua:140835 Serial 4421  
Permanent link to this record
 

 
Author Menezes, R.M.; Sardella, E.; Cabral, L.R.E.; de Souza Silva, C.C. doi  openurl
  Title Self-assembled vortex crystals induced by inhomogeneous magnetic textures Type A1 Journal article
  Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 31 Issue 17 Pages 175402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the self-assembly of vortices in a type-II superconducting disk subjected to highly nonuniform confining potentials produced by inhomogeneous magnetic textures. Using a series of numerical experiments performed within the Ginzburg–Landau theory, we show that vortices can arrange spontaneously in highly nonuniform, defect-free crystals, reminiscent of conformal lattices, even though the strict conditions for the conformal crystal are not fulfilled. These results contradict continuum-limit theory, which predicts that the order of a nonuniform crystal is unavoidably frustrated by the presence of topological defects. By testing different cooling routes of the superconductor, we observed several different self-assembled configurations, each of which corresponding to one in a set of allowed conformal transformations, which depends on the magnetic and thermal histories of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191094 Serial 8511  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title Buckled circular monolayer graphene : a graphene nano-bowl Type A1 Journal article
  Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 23 Issue 4 Pages 045002-045002,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the stability of circular monolayer graphene subjected to a radial load using non-equilibrium molecular dynamics simulations. When monolayer graphene is radially stressed, after some small circular strain (~0.4%) it buckles and bends into a new bowl-like shape. Young's modulus is calculated from the linear relation between stress and strain before the buckling threshold, which is in agreement with experimental results. The prediction of elasticity theory for the buckling threshold of a radially stressed plate is presented and its results are compared to the one of our atomistic simulation. The Jarzynski equality is used to estimate the difference between the free energy of the non-compressed states and the buckled states. From a calculation of the free energy we obtain the optimum radius for which the system feels the minimum boundary stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000286142800003 Publication Date 2010-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 27 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 2.649; 2011 IF: 2.546  
  Call Number UA @ lucian @ c:irua:88043 Serial 259  
Permanent link to this record
 

 
Author Pina, J.C.; de Souza Silva, C.C.; Milošević, M.V. url  doi
openurl 
  Title Stability of fractional vortex states in a two-band mesoscopic superconductor Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 2 Pages 024512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the stability of noncomposite fractional vortex states in a mesoscopic two-band superconductor within the two-component Ginzburg-Landau model. Our analysis explicitly takes into account the relationship between the model parameters and microscopic material parameters, such as partial density of states, Fermi velocities and elements of the electron-phonon coupling matrix. We have found that states with different phase winding number in each band (L-1 not equal L-2) and fractional flux can exist in many different configurations, including rather unconventional ones where the dominating band carries larger winding number and states where vertical bar L-1 – L-2 vertical bar > 1. We present a detailed analysis of the stability of the observed vortex structures with respect to changing the microscopic parameters, showing that, in the weak coupling case, fractional vortex states can be assessed in essentially the whole range of temperatures and applied magnetic fields in which both bands are active. Finally, we propose an efficient way of increasing the range of parameters for which these fractional vortex states can be stabilized. In particular, our proposal allows for observation of fractional vortex structures in materials with stronger coupling, where those states are forbidden at a homogeneous field. This is accomplished with the help of the stray fields of a suitably prepared magnetic dot placed nearby the superconducting disk.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000306309600006 Publication Date 2012-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; We thank Eric B. Claude, Miguel A. Zorro, and Rogerio M. da Silva for assistance in the development of the numerical code used in our simulations. This work was supported by the Brazilian science agencies CNPq and FACEPE, by the FACEPE/CNPq-PRONEX program, under Grant No. APQ-0589-1.05/08, and by CNPq-FWO Brazil-Flanders co-operation program. M.V.M. acknowledges support from the CAPES-PVE program. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100766 Serial 3126  
Permanent link to this record
 

 
Author Fernández Becerra, V.; Sardella, E.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Vortical versus skyrmionic states in mesoscopic p-wave superconductors Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 014518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the superconducting states that arise as a consequence of mesoscopic confinement and a multicomponent order parameter in the Ginzburg-Landau model for p-wave superconductivity. Conventional vortices, but also half-quantum vortices and skyrmions, are found as the applied magnetic field and the anisotropy parameters of the Fermi surface are varied. The solutions are well differentiated by a topological charge that for skyrmions is given by the Hopf invariant and for vortices by the circulation of the superconducting velocity. We revealed several unique states combining vortices and skyrmions, their possible reconfiguration with varied magnetic field, as well as temporal and field-induced transitions between vortical and skyrmionic states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369217400004 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO). E.S. acknowledges support from the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131581 Serial 4275  
Permanent link to this record
 

 
Author Osca, J.; Sorée, B. doi  openurl
  Title Torque field and skyrmion motion by spin transfer torque in a quasi-2D interface in presence of strong spin-orbit interaction Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 130 Issue 13 Pages 133903  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We investigate the torque field and skyrmion motion at an interface between a ferromagnet hosting a skyrmion and a material with a strong spin-orbit interaction. We analyze both semiconductor materials and topological insulators using a Hamiltonian model that includes a linear term. The spin torque-inducing current is considered to flow in the single band limit; therefore, a quantum model of current is used. Skyrmion motion due to spin transfer torque proves to be more difficult in the presence of a spin-orbit interaction in the case where only interface in-plane currents are present. However, edge effects in narrow nanowires can be used to drive the skyrmion motion and to exert a limited control on its motion direction. We also show the differences and similarities between torque fields due to electric current in the many and single band limits. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000755090400003 Publication Date 2021-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:186452 Serial 7034  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: