toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brodu, A.; Ballottin, M.V.; Buhot, J.; van Harten, E.J.; Dupont, D.; La Porta, A.; Prins, P.T.; Tessier, M.D.; Versteegh, M.A.M.; Zwiller, V.; Bals, S.; Hens, Z.; Rabouw, F.T.; Christianen, P.C.M.; de Donega, C.M.; Vanmaekelbergh, D. url  doi
openurl 
  Title Exciton Fine Structure and Lattice Dynamics in InP/ZnSe Core/Shell Quantum Dots Type A1 Journal article
  Year (down) 2018 Publication ACS Photonics Abbreviated Journal Acs Photonics  
  Volume 5 Issue 5 Pages 3353-3362  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline InP quantum dots (QDs) hold promise for heavy-metal-free optoelectronic applications due to their bright and size tunable emission in the visible range. Photochemical stability and high photoluminescence (PL) quantum yield are obtained by a diversity of epitaxial shells around the InP core. To understand and optimize the emission line shapes, the exciton fine structure of InP core/shell QD systems needs be investigated. Here, we study the exciton fine structure of InP/ZnSe core/shell QDs with core diameters ranging from 2.9 to 3.6 nm (PL peak from 2.3 to 1.95 eV at 4 K). PL decay measurements as a function of temperature in the 10 mK to 300 K range show that the lowest exciton fine structure state is a dark state, from which radiative recombination is assisted by coupling to confined acoustic phonons with energies ranging from 4 to 7 meV, depending on the core diameter. Circularly polarized fluorescence line-narrowing (FLN) spectroscopy at 4 K under high magnetic fields (up to 30 T) demonstrates that radiative recombination from the dark F = +/- 2 state involves acoustic and optical phonons, from both the InP core and the ZnSe shell. Our data indicate that the highest intensity FLN peak is an acoustic phonon replica rather than a zero-phonon line, implying that the energy separation observed between the F = +/- 1 state and the highest intensity peak in the FLN spectra (6 to 16 meV, depending on the InP core size) is larger than the splitting between the dark and bright fine structure exciton states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000442185900049 Publication Date 2018-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.756 Times cited 40 Open Access OpenAccess  
  Notes ; We acknowledge the support of the HFML-RU/FOM, member of the European Magnetic Field Laboratory (EMFL). D.V. and Z.H. acknowledge support by the European Commission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656) and the Marie Sklodowska-Curie Action Compass (H2020 MSCA-RISE-691185). Z.H. acknowledges the Research Foundation Flanders (project 17006602) and Ghent University (GOA no. 01G01513). Z.H. and S.B. acknowledge SIM vzw (SBO-QDOCCO). F.T.R. acknowledges financial support from The Netherlands Organisation for Scientific Research NWO (Gravitation program Multiscale Catalytic Energy Conversion and VENI grant number 722.017.002). This work was also supported by the Dutch NWO-Physics Program DDC13, ERC Advanced Grant 692691 “First step”, and ERC Starting Grant 335078 “COLOURATOM”. ; ecas_sara Approved Most recent IF: 6.756  
  Call Number UA @ lucian @ c:irua:153753UA @ admin @ c:irua:153753 Serial 5100  
Permanent link to this record
 

 
Author Ding, F.; Li, B.; Akopian, N.; Perinetti, U.; Chen, Y.H.; Peeters, F.M.; Rastelli, A.; Zwiller, V.; Schmidt, O.G. doi  openurl
  Title Single neutral excitons confined in AsBr3 in situ etched InGaAs quantum rings Type A1 Journal article
  Year (down) 2011 Publication Journal of nanoelectronics and optoelectronics Abbreviated Journal J Nanoelectron Optoe  
  Volume 6 Issue 1 Pages 51-57  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We observe the evolution of single self-assembled semiconductor quantum dots into quantum rings during AsBr3 in situ etching. The direct three-dimensional imaging of In(Ga)As nanostructures embedded in GaAs matrix is demonstrated by selective wet chemical etching combined with atomic force microscopy. Single neutral excitons confined in these quantum rings are studied by magneto-photoluminescence. Oscillations in the exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we demonstrate that the period of the oscillations can be tuned by a gate potential that modifies the exciton confinement. The experimental results, combined with calculations, indicate that the exciton Aharonov-Bohm effect may account for the observed effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000290692200005 Publication Date 2011-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1555-130X;1555-1318; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.497 Times cited 3 Open Access  
  Notes ; We acknowledge L. P. Kouwenhoven and Z. G. Wang for support, C. C. Bof Bufon, C. Deneke, V. Fomin, A. Govorov, S. Kiravittaya, and Wen-Hao Chang for their help and discussions. We are grateful for the financial support of NWO (VIDI), the CAS-MPG programm, the DFG (FOR730), BMBF (No. 01BM459), NSFC China (60625402), and Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 0.497; 2011 IF: 0.556  
  Call Number UA @ lucian @ c:irua:90187 Serial 3025  
Permanent link to this record
 

 
Author Ding, F.; Akopian, N.; Li, B.; Perinetti, U.; Govorov, A.; Peeters, F.M.; Bufon, C.C.; Deneke, C.; Chen, Y.H.; Rastelli, A.; Schmidt, O.G.; Zwiller, V. url  doi
openurl 
  Title Gate controlled Aharonov-Bohm-type oscillations from single neutral excitons in quantum rings Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 7 Pages 8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000280813100005 Publication Date 2010-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 58 Open Access  
  Notes ; We acknowledge L. P. Kouwenhoven and Z. G. Wang for support, L. Wang, V. Fomin, S. Kiravittaya, M. Tadic, Wen-Hao Chang, I. Sellers, A. Avetisyan, and C. Pryor for fruitful discussions and the financial support of NWO (VIDI), the CAS-MPG program, the DFG (FOR730), BMBF (Grant No. 01BM459), NSFC (Grant No. 60625402), and Flemish Science Foundation (FWO-V1). Access to the TEM of B. Rellinghaus is acknowledged. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83992 Serial 1321  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: