toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dabral, A.; Pourtois, G.; Sankaran, K.; Magnus, W.; Yu, H.; de de Meux, A.J.; Lu, A.K.A.; Clima, S.; Stokbro, K.; Schaekers, M.; Collaert, N.; Horiguchi, N.; Houssa, M. doi  openurl
  Title Study of the intrinsic limitations of the contact resistance of metal/semiconductor interfaces through atomistic simulations Type A1 Journal article
  Year (down) 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 7 Issue 6 Pages N73-N80  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this contribution, we report a fundamental study of the factors that set the contact resistivity between metals and highly doped n-type 2D and 3D semiconductors. We investigate the case of n-type doped Si contacted with amorphous TiSi combining first principles calculations with Non-Equilibrium Green functions transport simulations. The evolution of the intrinsic contact resistivity with the doping concentration is found to saturate at similar to 2 x 10(-10) Omega.cm(2) for the case of TiSi and imposes an intrinsic limit to the ultimate contact resistance achievable for n-doped Silamorphous-TiSi (aTiSi). The limit arises from the intrinsic properties of the semiconductors and of the metals such as their electron effective masses and Fermi energies. We illustrate that, in this regime, contacting heavy electron effective mass metals with semiconductor helps reducing the interface intrinsic contact resistivity. This observation seems to hold true regardless of the 3D character of the semiconductor, as illustrated for the case of three 2D semiconducting materials, namely MoS2, ZrS2 and HfS2. (C) The Author(s) 2018. Published by ECS.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000440836000004 Publication Date 2018-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.787 Times cited 2 Open Access Not_Open_Access  
  Notes ; The authors thank the imec core CMOS program members, the European Commission, its TAKEMI5 ECSEL research project and the local authorities for their support. ; Approved Most recent IF: 1.787  
  Call Number UA @ lucian @ c:irua:153205UA @ admin @ c:irua:153205 Serial 5130  
Permanent link to this record
 

 
Author Pourtois, G.; Dabral, A.; Sankaran, K.; Magnus, W.; Yu, H.; de de Meux, A.J.; Lu, A.K.A.; Clima, S.; Stokbro, K.; Schaekers, M.; Houssa, M.; Collaert, N.; Horiguchi, N. pdf  doi
openurl 
  Title Probing the intrinsic limitations of the contact resistance of metal/semiconductor interfaces through atomistic simulations Type P1 Proceeding
  Year (down) 2017 Publication Semiconductors, Dielectrics, And Metals For Nanoelectronics 15: In Memory Of Samares Kar Abbreviated Journal  
  Volume Issue Pages 303-311  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this contribution, we report a fundamental study of the factors that set the contact resistivity between metals and highly doped semiconductors. We investigate the case of n-type doped Si contacted with amorphous TiSi combining first-principles calculations with Non-Equilibrium Green functions transport simulations. The intrinsic contact resistivity is found to saturate at similar to 2x10(-10) Omega.cm(2) with the doping concentration and sets an intrinsic limit to the ultimate contact resistance achievable for n-doped Si vertical bar amorphous-TiSi. This limit arises from the intrinsic properties of the semiconductor and of the metal such as their electron effective masses and Fermi energies. We illustrate that, in this regime, contacting metals with a heavy electron effective mass helps reducing the interface intrinsic contact resistivity.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical soc inc Place of Publication Pennington Editor  
  Language Wos 000426271800028 Publication Date 2017-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 80 Series Issue 1 Edition  
  ISSN 978-1-62332-470-4; 978-1-60768-818-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149966 Serial 4976  
Permanent link to this record
 

 
Author Sankaran, K.; Swerts, J.; Couet, S.; Stokbro, K.; Pourtois, G. url  doi
openurl 
  Title Oscillatory behavior of the tunnel magnetoresistance due to thickness variations in Ta vertical bar CoFe vertical bar MgO magnetic tunnel junctions : a first-principles study Type A1 Journal article
  Year (down) 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 094424  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To investigate the impact of both the CoFe ferromagnetic layer thickness and the capping paramagnetic layer on the tunnel magnetoresistance (TMR), we performed first-principles simulations on epitaxial magnetic tunnel junctions contacted with either CoFe or Ta paramagnetic capping layers. We observed a strong oscillation of the TMR amplitude with respect to the thickness of the ferromagnetic layer. The TMR is found to be amplified whenever the MgO spin tunnel barrier is thickened. Quantization of the electronic structure of the ferromagnetic layers is found to be at the origin of this oscillatory behavior. Metals such as Ta contacting the magnetic layer are found to enhance the amplitude of the oscillations due to the occurrence of an interface dipole. The latter drives the band alignment and tunes the nature of the spin channels that are active during the tunneling process. Subsequently, the regular transmission spin channels are modulated in the magnetic tunnel junction stack and other complex ones are being activated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383860700004 Publication Date 2016-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:137122 Serial 4468  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: