toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Skorikov, A.; Heyvaert, W.; Albecht, W.; Pelt, D.M.; Bals, S. pdf  url
doi  openurl
  Title Deep learning-based denoising for improved dose efficiency in EDX tomography of nanoparticles Type A1 Journal article
  Year (down) 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue Pages 12242-12249  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The combination of energy-dispersive X-ray spectroscopy (EDX) and electron tomography is a powerful approach to retrieve the 3D elemental distribution in nanomaterials, providing an unprecedented level of information for complex, multi-component systems, such as semiconductor devices, as well as catalytic and plasmonic nanoparticles. Unfortunately, the applicability of EDX tomography is severely limited because of extremely long acquisition times and high electron irradiation doses required to obtain 3D EDX reconstructions with an adequate signal-to-noise ratio. One possibility to address this limitation is intelligent denoising of experimental data using prior expectations about the objects of interest. Herein, this approach is followed using the deep learning methodology, which currently demonstrates state-of-the-art performance for an increasing number of data processing problems. Design choices for the denoising approach and training data are discussed with a focus on nanoparticle-like objects and extremely noisy signals typical for EDX experiments. Quantitative analysis of the proposed method demonstrates its significantly enhanced performance in comparison to classical denoising approaches. This allows for improving the tradeoff between the reconstruction quality, acquisition time and radiation dose for EDX tomography. The proposed method is therefore especially beneficial for the 3D EDX investigation of electron beam-sensitive materials and studies of nanoparticle transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000671395800001 Publication Date 2021-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 11 Open Access OpenAccess  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 016.Veni.192.235 ; H2020 European Research Council, 815128 ; H2020 Marie Skłodowska-Curie Actions, 797153 ; H2020 Research Infrastructures, 731019; realnano; sygmaSB Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:179756 Serial 6799  
Permanent link to this record
 

 
Author Skorikov, A.; Heyvaert, W.; Albrecht, W.; Pelt, D.M.; Bals, S. doi  openurl
  Title EMAT Simulated 3D Nanoparticle Structures Dataset Type Dataset
  Year (down) 2021 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset contains 1000 simulated nanoparticle-like 3D structures and noisy EDX-like elemental maps based on them. These data are intended to be used for quantitative analysis of data processing methods in (EDX) tomography of nanoparticles and training the data-driven approaches for these tasks. The dataset is structured as follows: voxel_data/clean 3D voxel grid representation of the simulated nanoparticles. Voxel intensities are adjusted so that the total intensity equals 103. All 3D structures have unique identifiers in 0..999 range. The data derived from a 3D structure preserves this unique identifier. sinograms/clean Tilt series of projection images obtained from the corresponding 3D structures over an angular range of -75..75 degrees with a tilt step of 10 degrees to simulate a typical tilt series used in EDX tomography. Total intensity in each projection image equals 103. sinograms/noisy Tilt series of projection images corrupted with Poisson noise and an additional spatially uniform background noise. projections/clean Projection images extracted from the clean tilt series at 0 degrees tilt angle. projections/noisy Projection images extracted from the noisy tilt series at 0 degrees tilt angle. images/clean Visualizations of the clean projections as PNG images with the intensity range adjusted to 0..255 images/noisy Visualizations of the noisy projections as PNG images with the intensity range adjusted to 0..255  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180615 Serial 6838  
Permanent link to this record
 

 
Author Vanrompay, H.; Buurlage, J.‐W.; Pelt, D.M.; Kumar, V.; Zhuo, X.; Liz‐Marzán, L.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Real‐Time Reconstruction of Arbitrary Slices for Quantitative and In Situ 3D Characterization of Nanoparticles Type A1 Journal article
  Year (down) 2020 Publication Particle & Particle Systems Characterization Abbreviated Journal Part Part Syst Char  
  Volume 37 Issue 37 Pages 2000073  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A detailed 3D investigation of nanoparticles at a local scale is of great importance to connect their structure and composition to their properties. Electron tomography has therefore become an important tool for the 3D characterization of nanomaterials. 3D investigations typically comprise multiple steps, including acquisition, reconstruction, and analysis/quantification. Usually, the latter two steps are performed offline, at a dedicated workstation. This sequential workflow prevents on-the-fly control of experimental parameters to improve the quality of the 3D reconstruction, to select a relevant nanoparticle for further characterization or to steer an in-situ tomography experiment. Here, we present an efficient approach to overcome these limitations, based on the real-time reconstruction of arbitrary 2D reconstructed slices through a 3D object. Implementation of this method may lead to generalized implementation of electron tomography for routine nanoparticle characterization in 3D.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536357100001 Publication Date 2020-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 10 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 1S32617N ; Fonds Wetenschappelijk Onderzoek, G026718N ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 639.073.506 016.Veni.192.235 ; H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G026718N). Financial support was provided by The Netherlands Organization for Scientific Research (NWO), project numbers 639.073.506 and 016.Veni.192.235. This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). H.V. and J.-W.B contributed equally to this work.; sygma Approved Most recent IF: 2.7; 2020 IF: 4.474  
  Call Number EMAT @ emat @c:irua:169704 Serial 6371  
Permanent link to this record
 

 
Author Bladt, E.; Pelt, D.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Electron tomography based on highly limited data using a neural network reconstruction technique Type A1 Journal article
  Year (down) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 158 Issue 158 Pages 81-88  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000361574800011 Publication Date 2015-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess  
  Notes 335078 COLOURATOM; FWO; COST Action MP1207; 312483 ESTEEM2; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:126675 c:irua:126675 Serial 988  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: