toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Javdani, Z.; Hassani, N.; Faraji, F.; Zhou, R.; Sun, C.; Radha, B.; Neyts, E.; Peeters, F.M.; Neek-Amal, M. pdf  url
doi  openurl
  Title Clogging and unclogging of hydrocarbon-contaminated nanochannels Type A1 Journal article
  Year (down) 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 13 Issue 49 Pages 11454-11463  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The recent advantages of the fabrication of artificial nanochannels enabled new research on the molecular transport, permeance, and selectivity of various gases and molecules. However, the physisorption/chemisorption of the unwanted molecules (usually hydrocarbons) inside nanochannels results in the alteration of the functionality of the nanochannels. We investigated contamination due to hydrocarbon molecules, nanochannels made of graphene, hexagonal boron nitride, BC2N, and molybdenum disulfide using molecular dynamics simulations. We found that for a certain size of nanochannel (i.e., h = 0.7 nm), as a result of the anomalous hydrophilic nature of nanochannels made of graphene, the hydrocarbons are fully adsorbed in the nanochannel, giving rise to full uptake. An increasing temperature plays an important role in unclogging, while pressure does not have a significant role. The results of our pioneering work contribute to a better understanding and highlight the important factors in alleviating the contamination and unclogging of nanochannels, which are in good agreement with the results of recent experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000893147700001 Publication Date 2022-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.7  
  Call Number UA @ admin @ c:irua:192815 Serial 7263  
Permanent link to this record
 

 
Author Du, K.; Guo, L.; Peng, J.; Chen, X.; Zhou, Z.-N.; Zhang, Y.; Zheng, T.; Liang, Y.-P.; Lu, J.-P.; Ni, Z.-H.; Wang, S.-S.; Van Tendeloo, G.; Zhang, Z.; Dong, S.; Tian, H. url  doi
openurl 
  Title Direct visualization of irreducible ferrielectricity in crystals Type A1 Journal article
  Year (down) 2020 Publication npj Quantum Materials Abbreviated Journal  
  Volume 5 Issue 1 Pages 49-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In solids, charge polarity can one-to-one correspond to spin polarity phenomenologically, e.g., ferroelectricity/ferromagnetism, antiferroelectricity/antiferromagnetism, and even dipole-vortex/magnetic-vortex, but ferrielectricity/ferrimagnetism kept telling a disparate story in microscopic level. Since the definition of a charge dipole involves more than one ion, there may be multiple choices for a dipole unit, which makes most ferrielectric orders equivalent to ferroelectric ones, i.e., this ferrielectricity is not necessary to be a real independent branch of polarity. In this work, by using the spherical aberration-corrected scanning transmission electron microscope, we visualize a nontrivial ferrielectric structural evolution in BaFe2Se3, in which the development of two polar sub-lattices is out-of-sync, for which we term it as irreducible ferrielectricity. Such irreducible ferrielectricity leads to a non-monotonic behavior for the temperature-dependent polarization, and even a compensation point in the ordered state. Our finding unambiguously distinguishes ferrielectrics from ferroelectrics in solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000551499400001 Publication Date 2020-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes ; We acknowledge the National Natural Science Foundation of China (Grant Nos. 11834002, 11674055, and 11234011), National Key R&D Program of China 2017YFB0703100, and the 111 Project (Grant No. B16042). K.D. acknowledges the China Scholarship Council (CSC, No.201806320230) for sponsorship and 2019 Zhejiang University Academic Award for Outstanding Doctoral Candidates. We thank Prof. Fang Lin for providing guidance on calculating atoms position and Dr. Andrew Studer for performing neutron powder diffraction. We thank Prof. Sang-Wook Cheong, Prof. Zhigao Sheng, Prof. Qianghua Wang, Prof. Meng Wang, Prof. Renkui Zheng, Prof. Takuya Aoyama, Dr. Zhibo Yan, and Dr. Meifeng Liu for valuable discussion and/or technical help during measurements. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171225 Serial 6486  
Permanent link to this record
 

 
Author He, L.; Wang, H.; Chen, L.; Wang, X.; Xie, H.; Jiang, C.; Li, C.; Elibol, K.; Meyer, J.; Watanabe, K.; Taniguchi, T.; Wu, Z.; Wang, W.; Ni, Z.; Miao, X.; Zhang, C.; Zhang, D.; Wang, H.; Xie, X. url  doi
openurl 
  Title Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment Type A1 Journal article
  Year (down) 2019 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 10 Issue 1 Pages 2815  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Atomically thin hexagonal boron nitride (h-BN) is often regarded as an elastic film that is impermeable to gases. The high stabilities in thermal and chemical properties allow h-BN to serve as a gas barrier under extreme conditions. Here, we demonstrate the isolation of hydrogen in bubbles of h-BN via plasma treatment. Detailed characterizations reveal that the substrates do not show chemical change after treatment. The bubbles are found to withstand thermal treatment in air, even at 800°C. Scanning transmission electron microscopy investigation shows that the h-BN multilayer has a unique aligned porous stacking nature, which is essential for the character of being transparent to atomic hydrogen but impermeable to hydrogen molecules. In addition, we successfully demonstrated the extraction of hydrogen gases from gaseous compounds or mixtures containing hydrogen element. The successful production of hydrogen bubbles on h-BN flakes has potential for further application in nano/ micro-electromechanical systems and hydrogen storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473002500004 Publication Date 2019-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 8 Open Access Not_Open_Access  
  Notes The work was partially supported by the National Key R&D program (Grant No. 2017YFF0206106), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), the National Science Foundation of China (Grant Nos. 51772317, 51302096), the Science and Technology Commission of Shanghai Municipality (Grant No. 16ZR1442700), the Hubei Provincial Natural Science Foundation of China (Grant No. ZRMS2017000370), and the Fundamental Research Funds of Wuhan City (No. 2016060101010075). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI Grant Numbers JP15K21722. C.L. acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grants No. 656378—Interfacial Reactions. L.H. acknowledges financial support from the program of China Scholarships Council (No. 201706160037). H.W. and D.Z. thank Y. Gu, Y. Ma, X. Chen (Shanghai Institute of Technical Physics, Chinese Academy of Sciences) for FTIR spectra measurement. L.C. and L.H. thank Q. Liu and Z. Liu (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) for measurement in XPS spectra and mass spectra. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @c:irua:160714 Serial 5191  
Permanent link to this record
 

 
Author Aslani, Z.; Sisakht, E.T.; Fazileh, F.; Ghorbanfekr-Kalashami, H.; Peeters, F.M. url  doi
openurl 
  Title Conductance fluctuations of monolayer GeSnH2$ in the topological phase using a low-energy effective tight-binding Hamiltonian Type A1 Journal article
  Year (down) 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 11 Pages 115421  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract An effective tight-binding (TB) Hamiltonian for monolayer GeSnH2 is constructed which has an inversion-asymmetric honeycomb structure. The low-energy band structure of our TB model agrees very well with previous ab initio calculations even under biaxial tensile strain. Our model predicts a phase transition at 7.5% biaxial tensile strain in agreement with DFT calculations. Upon 8.5% strain the system exhibits a band gap of 134 meV, suitable for room temperature applications. It is shown that an external applied magnetic field produces a special phase which is a combination of the quantum Hall (QH) and quantum spin Hall (QSH) phases; and at a critical magnetic field strength the QSH phase completely disappears. The topological nature of the phase transition is confirmed from: (1) the calculation of the Z(2) topological invariant, and (2) quantum transport properties of disordered GeSnH2 nanoribbons which allows us to determine the universality class of the conductance fluctuations. The application of an external applied magnetic field reduces the conductance fluctuations by a factor of root 2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461958900006 Publication Date 2019-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes ; This work was supported by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:158538 Serial 5199  
Permanent link to this record
 

 
Author Rezaei, M.; Sisakht, E.T.; Fazileh, F.; Aslani, Z.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding model investigation of the biaxial strain induced topological phase transition in GeCH3 Type A1 Journal article
  Year (down) 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 8 Pages 085441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We propose a tight-binding (TB) model, that includes spin-orbit coupling (SOC), to describe the electronic properties of methyl-substituted germanane (GeCH3). This model gives an electronic spectrum in agreement with first principle results close to the Fermi level. Using the Z(2) formalism, we show that a topological phase transition from a normal insulator (NI) to a quantum spin Hall (QSH) phase occurs at 11.6% biaxial tensile strain. The sensitivity of the electronic properties of this system on strain, in particular its transition to the topological insulating phase, makes it very attractive for applications in strain sensors and other microelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000408570800004 Publication Date 2017-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145697 Serial 4755  
Permanent link to this record
 

 
Author Tit, N.; Al Ezzi, M.M.; Abdullah, H.M.; Yusupov, M.; Kouser, S.; Bahlouli, H.; Yamani, Z.H. pdf  url
doi  openurl
  Title Detection of CO2 using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity Type A1 Journal article
  Year (down) 2017 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys  
  Volume 186 Issue 186 Pages 353-364  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The adsorption of CO2 on surfaces of graphene and carbon nanotubes (CNTs), decorated with Fe atoms, are investigated using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method, neglecting the heat effects. Fe ad-atoms are more stable when they are dispersed on hollow sites. They introduce a large density of states at the Fermi level (N-F); where keeping such density low would help in gas sensing. Furthermore, the Fe ad-atom can weaken the C=O double bonds of the chemisorbed CO2 molecule, paving the way for oxygen atoms to drain more charges from Fe. Consequently, chemisorption of CO2 molecules reduces both N-F and the conductance while it enhances the sensitivity with the increasing gas dose. Conducting armchair CNTs (ac-CNTs) have higher sensitivity than graphene and semiconducting zigzag CNTs (zz-CNT5). Comparative study of sensitivity of ac-CNT-Fe composite towards various gases (e.g., O-2, N-2, H-2, H2O, CO and CO2) has shown high sensitivity and selectivity towards CO, CO2 and H2O gases. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000390621200044 Publication Date 2016-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.084 Times cited 17 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.084  
  Call Number UA @ lucian @ c:irua:140333 Serial 4465  
Permanent link to this record
 

 
Author Tomasi, N.; Mimmo, T.; Terzano, R.; Alfeld, M.; Janssens, K.; Zanin, L.; Pinton, R.; Varanini, Z.; Cesco, S. pdf  doi
openurl 
  Title Nutrient accumulation in leaves of Fe-deficient cucumber plants treated with natural Fe complexes Type A1 Journal article
  Year (down) 2014 Publication Biology and fertility of soils Abbreviated Journal Biol Fert Soils  
  Volume 50 Issue 6 Pages 973-982  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Plants mainly rely on a mixture of Fe complexes with different organic ligands, like carboxylates and soluble fractions of water-extractable humic substances (WEHSs), to sustain the supply of this micronutrient. It has been demonstrated that the Fe-WEHS complex is more efficiently acquired by plant roots as it enhances functionality of the mechanisms involved in Fe acquisition at the root and leaf levels, allowing a faster recovery of the Fe-deficiency symptoms. The aim of this work is to verify whether this recovery involves also the allocation and accumulation of nutrients other than Fe to and within the leaf tissues. Iron-deficient plants treated with Fe-WEHS recovered more quickly the functionality both to uptake nitrate at the root level and to fixate CO2 in the leaves than those supplied with Fe-citrate. Concomitantly, Fe-WEHS-treated plants also accumulated other cationic nutrients faster and at a higher extent. Synchrotron 2D-scanning μ-X-ray fluorescence analyses of the leaves revealed that the recovery promotes a change in the allocation of these nutrients from the vascular system (K, Cu, and Zn) or trichomes (Ca and Mn) to the entire leaf blade. Fe-WEHS treatment efficiently promotes the recovery from Fe-deficiency-induced chlorosis with an enhanced allocation of other nutrients into the leaves and promoting their distribution into the entire leaf blade.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000339880800010 Publication Date 2014-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0178-2762 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.683 Times cited 25 Open Access  
  Notes ; Research was supported by grants from Italian MIUR (FIRB-Programma “Futuro in Ricerca”) and Free University of Bolzano (TN5056). Synchrotron experiments at HASYLAB were financially supported by the European Community-Research Infrastructure Action under the FP6 “Structuring the European Research Area” Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). The authors acknowledge support from the Hercules fund, Brussels (grant A11/0387), and from FWO (Brussels) via grant G.0C12.13. ; Approved Most recent IF: 3.683; 2014 IF: 3.398  
  Call Number UA @ admin @ c:irua:116597 Serial 5753  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: