toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Spanoghe, J.; Ost, K.J.; Van Beeck, W.; Vermeir, P.; Lebeer, S.; Vlaeminck, S.E. url  doi
openurl 
  Title Purple bacteria screening for photoautohydrogenotrophic food production : are new H₂-fed isolates faster and nutritionally better than photoheterotrophically obtained reference species? Type A1 Journal article
  Year (down) 2022 Publication New biotechnology Abbreviated Journal New Biotechnol  
  Volume 72 Issue Pages 38-47  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photoautohydrogenotrophic enrichments of wastewater treatment microbiomes were performed to obtain hypothetically high-potential specialist species for biotechnological applications. From these enrichment cultures, ten photoautohydrogenotrophic species were isolated: six Rhodopseudomonas species, three Rubrivivax members and Rhodobacter blasticus. The performance of these isolates was compared to three commonly studied, and originally photoheterotrophically enriched species (Rhodopseudomonas palustris, Rhodobacter capsulatus and Rhodobacter sphaeroides), designated as reference species. Repeated subcultivations were applied to improve the initial poor performance of the isolates (acclimation effect), which resulted in increases in both maximum growth rate and protein productivity. However, the maximum growth rate of the reference species remained 3–7 times higher compared to the isolates (0.42–0.84 d−1 at 28 °C), while protein productivities remained 1.5–1.7 times higher. This indicated that H2-based enrichment did not result in photoautohydrogenotrophic specialists, suggesting that the reference species are more suitable for intensified biomass and protein production. On the other hand, the isolates were able to provide equally high protein quality profiles as the references species, providing full dietary essential amino acid matches for human food. Lastly, the effect of metabolic carbon/electron switching (back and forth between auto- to heterotrophic conditions) initially boosted µmax when returning to photoautohydrogenotrophic conditions. However, the switch negatively impacted lag phase, protein productivities and pigment contents. In the case of protein productivity, the acquired acclimation was partially lost with decreases of up to 44 % and 40 % respectively for isolates and reference species. Finally, the three reference species, and specifically Rh. capsulatus, remained the most suitable candidate(s) for further biotechnological development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861078800005 Publication Date 2022-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1871-6784; 1876-4347 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.4  
  Call Number UA @ admin @ c:irua:190188 Serial 7199  
Permanent link to this record
 

 
Author Spacova, I.; Ahannach, S.; Breynaert, A.; Erreygers, I.; Wittouck, S.; Bron, P.A.; Van Beeck, W.; Eilers, T.; Alloul, A.; Blansaer, N.; Vlaeminck, S.E.; Hermans, N.; Lebeer, S. url  doi
openurl 
  Title Spontaneous riboflavin-overproducing Limosilactobacillus reuteri for biofortification of fermented foods Type A1 Journal article
  Year (down) 2022 Publication Frontiers in Nutrition Abbreviated Journal  
  Volume 9 Issue Pages 916607-916619  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Riboflavin-producing lactic acid bacteria represent a promising and cost-effective strategy for food biofortification, but production levels are typically insufficient to support daily human requirements. In this study, we describe the novel human isolate Limosilactobacillus reuteri AMBV339 as a strong food biofortification candidate. This strain shows a high natural riboflavin (vitamin B2) overproduction of 18.36 mu g/ml, biomass production up to 6 x 10(10) colony-forming units/ml (in the typical range of model lactobacilli), and pH-lowering capacities to a pH as low as 4.03 in common plant-based (coconut, soy, and oat) and cow milk beverages when cultured up to 72 h at 37 degrees C. These properties were especially pronounced in coconut beverage and butter milk fermentations, and were sustained in co-culture with the model starter Streptococcus thermophilus. Furthermore, L. reuteri AMBV339 grown in laboratory media or in a coconut beverage survived in gastric juice and in a simulated gastrointestinal dialysis model with colon phase (GIDM-colon system) inoculated with fecal material from a healthy volunteer. Passive transport of L. reuteri AMBV339-produced riboflavin occurred in the small intestinal and colon stage of the GIDM system, and active transport via intestinal epithelial Caco-2 monolayers was also demonstrated. L. reuteri AMBV339 did not cause fecal microbiome perturbations in the GIDM-colon system and inhibited enteric bacterial pathogens in vitro. Taken together, our data suggests that L. reuteri AMBV339 represents a promising candidate to provide riboflavin fortification of plant-based and dairy foods, and has a high application potential in the human gastrointestinal tract.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000814856600001 Publication Date 2022-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-861x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5  
  Call Number UA @ admin @ c:irua:189011 Serial 7211  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Bundervoet, B.; Carlier, N.; Van Beeck, W.; Mollen, H.; Lebeer, S.; Colsen, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Piloting carbon-lean nitrogen removal for energy-autonomous sewage treatment Type A1 Journal article
  Year (down) 2021 Publication Environmental Science-Water Research & Technology Abbreviated Journal Environ Sci-Wat Res  
  Volume 7 Issue 12 Pages 2268-2281  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (∼chemical oxygen demand, COD), so that a maximum of the COD can be redirected to energy recovery. Shortcut N removal technologies such as partial nitritation/anammox and nitritation/denitritation are therefore essential, enabling carbon- and energy-lean nitrogen removal. In this study, a novel three-reactor pilot design was tested and consisted of a denitrification, an intermittent aeration, and an anammox tank. A vibrating sieve was added for differential sludge retention time (SRT) control. The 13 m3 pilot was operated on pre-treated sewage (A-stage effluent) at 12–24 °C. Selective suppression of unwanted nitrite-oxidizing bacteria over aerobic ammonium-oxidizing bacteria was achieved with strict floccular SRT management combined with innovative aeration control, resulting in a minimal nitrate production ratio of 17 ± 10%. Additionally, anoxic ammonium-oxidizing bacteria (AnAOB) activity could be maintained in the reactor for at least 150 days because of long granular SRT management and the anammox tank. Consequently, the COD/N removal ratio of 2.3 ± 0.7 demonstrated shortcut N removal almost three times lower than the currently applied nitrification/denitrification technology. The effluent total N concentrations of 17 ± 3 mg TN per L (at 21 ± 1 °C) and 17 ± 6 mg TN per L (at 15 ± 1 °C) were however too high for application at the sewage treatment plant Nieuwveer (Breda, The Netherlands). Corresponding N removal efficiencies were 52 ± 12% and 37 ± 21%, respectively. Further development should focus on redirecting more nitrite to AnAOB in the B-stage, exploring effluent-polishing options, or cycling nitrate for increased A-stage denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714159900001 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.817 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.817  
  Call Number UA @ admin @ c:irua:183347 Serial 8383  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Xie, Y.; Van Beeck, W.; Zhu, W.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox Type A1 Journal article
  Year (down) 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 342 Issue Pages 125996  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704455300005 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:181301 Serial 8355  
Permanent link to this record
 

 
Author Peng, L.; Xie, Y.; Van Beeck, W.; Zhu, W.; Van Tendeloo, M.; Tytgat, T.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Return-sludge treatment with endogenous free nitrous acid limits nitrate production and N₂O emission for mainstream partial nitritation/anammox Type A1 Journal article
  Year (down) 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 9 Pages 5822-5831  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrite oxidizing bacteria (NOB) and nitrous oxide (N2O) hinder the development of mainstream partial nitritation/anammox. To overcome these, endogenous free ammonia (FA) and free nitrous acid (FNA), which can be produced in the sidestream, were used for return-sludge treatment for two integrated-film activated sludge reactors containing biomass in flocs and on carriers. The repeated exposure of biomass from one reactor to FA shocks had a limited impact on NOB suppression but inhibited anammox bacteria (AnAOB). In the other reactor, repeated FNA shocks to the separated flocs failed to limit the system’s nitrate production since NOB activity was still high on the biofilms attached to the unexposed carriers. In contrast, the repeated FNA treatment of flocs and carriers favored aerobic ammonium-oxidizing bacteria (AerAOB) over NOB activity with AnAOB negligibly affected. It was further revealed that return-sludge treatment with higher FNA levels led to lower N2O emissions under similar effluent nitrite concentrations. On this basis, weekly 4 h FNA shocks of 2.0 mg of HNO2-N/L were identified as an optimal and realistic treatment, which not only enabled nitrogen removal efficiencies of ∼65% at nitrogen removal rates of ∼130 mg of N/L/d (20 °C) but also yielded the lowest cost and carbon footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530651900057 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; This study was supported by the European Commission Horizon 2020 Program through Marie Curie Individual Fellowship (N2OPNA-708592). W. V.B. and S. L. were supported by grants from the Flanders Innovation and Entrepreneurship Agency [IWT-SBO ProCure project (IWT/50052) by IWT-SBO ProCure and internal Uantwerpen funding]. The authors are grateful to the research collaboration. The authors declare no conflict of interest. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:168829 Serial 6596  
Permanent link to this record
 

 
Author Alloul, A.; Wuyts, S.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Volatile fatty acids impacting phototrophic growth kinetics of purple bacteria : paving the way for protein production on fermented wastewater Type A1 Journal article
  Year (down) 2019 Publication Water research Abbreviated Journal  
  Volume 152 Issue Pages 138-147  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nutrient losses in our food chain severely surpass our planetary boundaries. Resource recovery can contribute to mitigation, for instance through converting wastewater resources to microbial protein for animal feed. Wastewater typically holds a complex mixture of organics, posing a challenge to selectively produce heterotrophic biomass. Ensuring the product's quality could be achieved by anaerobic generation of volatile fatty acids (VFAs) followed by photoheterotrophic production of purple non-sulfur bacteria (PNSB) with infrared light. This study aimed to determine the most suitable PNSB culture for VFA conversion and map the effect of acetate, propionate, butyrate and a VFA mixture on growth and biomass yield. Six cultures were screened in batch: (i) Rhodopseudomonas palustris, (ii) Rhodobacter sphaeroides, (iii) Rhodospirillum rubrum, (iv) a 3-species synthetic community (i+ii+iii), (v) a community enriched on VFA holding Rb. capsulatus, and (vi) Rb. capsulatus (isolate v). The VFA mixture elevated growth rates with a factor 1.32.5 compared to individual VFA. Rb. capsulatus showed the highest growth rates: 1.82.2 d−1 (enriched) and 2.33.8 d−1 (isolated). In a photobioreactor (PBR) inoculated with the Rb. capsulatus enrichment, decreasing sludge retention time (SRT) yielded lower biomass concentrations, yet increased productivities, reaching 1.7 g dry weight (DW) L−1 d−1, the highest phototrophic rate reported thus far, and a growth rate of up to 5 d−1. PNSB represented 2657% of the community and the diversity index was low (37), with a dominance of Rhodopseudomonas at long SRT and Rhodobacter at short SRT. The biomass yield for all cultures, in batch and reactor cultivation, approached 1 g CODBiomass g−1 CODRemoved. An economic estimation for a two-stage approach on brewery wastewater (load 2427 kg COD d−1) showed that 0.5 d SRT allowed for the lowest production cost ( 10 kg−1 DW; equal shares for capex and opex). The findings strengthen the potential for a novel two-stage approach for resource recovery from industrial wastewater, enabling high-rate PNSB production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458223900013 Publication Date 2018-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156462 Serial 8739  
Permanent link to this record
 

 
Author Smets, W.; Wuyts, K.; Oerlemans, E.; Wuyts, S.; Denys, S.; Samson, R.; Lebeer, S. pdf  url
doi  openurl
  Title Impact of urban land use on the bacterial phyllosphere of ivy (Hedera sp.) Type A1 Journal article
  Year (down) 2016 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 147 Issue Pages 376-383  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The surface of the aerial parts of the plant, also termed the phyllosphere, is a selective habitat for microbes. The bacterial composition of the phyllosphere depends on host plant species, leaf characteristics, season, climate, and geographic location of the host plant. In this study, we investigated the effect of an urban environment on the bacterial composition of phyllosphere communities. We performed a passive biomonitoring experiment in which leaves were sampled from ivy (Hedera sp.), a common evergreen climber species, in urban and non-urban locations. Exposure to traffic-generated particulate matter was estimated using leaf biomagnetic analyses. The bacterial community composition was determined using 16S rRNA gene sequencing on the Illumina MiSeq. The phyllosphere microbial communities of ivy differed greatly between urban and non-urban locations, as we observed a shift in several of the dominant taxa: Beijerinckia and Methylocystaceae were most abundant in the non-urban phyllosphere, whereas Hymenobacter and Sphingomonadaceae were dominating the urban ivy phyllosphere. The richness, diversity and composition of the communities showed greater variability in the urban than in the non-urban locations, where traffic-generated PM was lower. Interestingly, the relative abundances of eight of the ten most dominant taxa correlated well with leaf magnetism, be it positive or negative. The results of this study indicate that an urban environment can greatly affect the local phyllosphere community composition. Although other urban-related factors cannot be ruled out, the relative abundance of most of the dominant taxa was significantly correlated with exposure to traffic-generated PM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388543600033 Publication Date 2016-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:136110 Serial 8066  
Permanent link to this record
 

 
Author Smets, W.; Moretti, S.; Denys, S.; Lebeer, S. pdf  doi
openurl 
  Title Airborne bacteria in the atmosphere : presence, purpose, and potential Type A1 Journal article
  Year (down) 2016 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 139 Issue Pages 214-221  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Numerous recent studies have highlighted that the types of bacteria present in the atmosphere often show predictable patterns across space and time. These patterns can be driven by differences in bacterial sources of the atmosphere and a wide range of environmental factors, including UV intensity, precipitation events, and humidity. The abundance of certain bacterial taxa is of interest, not only for their ability to mediate a range of chemical and physical processes in the atmosphere, such as cloud formation and ice nucleation, but also for their implications -both beneficial and detrimental-for human health. Consequently, the widespread importance of airborne bacteria has stimulated the search for their applicability. Improving air quality, modelling the dispersal of airborne bacteria (e.g. pathogens) and biotechnological purposes are already being explored. Nevertheless, many technological challenges still need to be overcome to fully understand the roles of airborne bacteria in our health and global ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379093900021 Publication Date 2016-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:133711 Serial 7432  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: