toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lujan, G.S.; Magnus, W.; Soree, B.; Pourghaderi, M.A.; Veloso, A.; van Dal, M.J.H.; Lauwers, A.; Kubicek, S.; De Gendt, S.; Heyns, M.; De Meyer, K.; doi  isbn
openurl 
  Title A new method to calculate leakage current and its applications for sub-45nm MOSFETs Type H1 Book chapter
  Year (down) 2005 Publication Solid-State Device Research (ESSDERC), European Conference T2 – ESSDERC 2005 : proceedings of 35th European Solid-State Device Research Conference, September 12-16, 2005, Grenoble, France Abbreviated Journal  
  Volume Issue Pages 489-492  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT)  
  Abstract This paper proposes a new quantum mechanical model for the calculation of leakage currents. The model incorporates both variational calculus and the transfer matrix method to compute the subband energies and the life times of the inversion layer states. The use of variational calculus simplifies the subband energy calculation due to the analytical firm of the wave functions, which offers an attractive perspective towards the calculation of the electron mobility in the channel. The model can be extended to high-k dielectrics with several layers. Good agreement between experimental data and simulation results is obtained for metal gate capacitors.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication S.l. Editor  
  Language Wos 000236176200114 Publication Date 2005-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-7803-9203-5 Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103691 Serial 2323  
Permanent link to this record
 

 
Author Pourtois, G.; Lauwers, A.; Kittl, J.; Pantisano, L.; Sorée, B.; De Gendt, S.; Magnus, W.; Heyns, A.; Maex, K. pdf  doi
openurl 
  Title First-principle calculations on gate/dielectric interfaces : on the origin of work function shifts Type A1 Journal article
  Year (down) 2005 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 80 Issue Pages 272-279  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The impact of interfacial chemistry occurring at dielectric/gate interface of P-MOS and N-MOS devices is reviewed through a quick literature survey. A specific emphasis is put on the way the bond polarization that occurs between a dielectric and a metal substrate impacts on the gate work function. First-principle simulations are then used to study the work function changes induced by dopant aggregation in nickel monosilicide metal gates. It is shown that the changes are a natural consequence of the variation of the interface polarization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000231517000062 Publication Date 2005-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 31 Open Access  
  Notes Approved Most recent IF: 1.806; 2005 IF: 1.347  
  Call Number UA @ lucian @ c:irua:95095 Serial 1199  
Permanent link to this record
 

 
Author Ghica, C.; Nistor, L.; Bender, H.; Steegen, A.; Lauwers, A.; Maex, K.; van Landuyt, J. doi  openurl
  Title In situ transmission electron microscopy study of the silicidation process in Co thin films on patterned (001) Si substrates Type A1 Journal article
  Year (down) 2001 Publication Journal of materials research Abbreviated Journal J Mater Res  
  Volume 16 Issue 3 Pages 701-708  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The results of an in situ transmission electron microscopy study of the formation of Co-silicides on patterned (001) Si substrates are discussed. It is shown that the results of the in situ heating experiments agreed very well with the data based on standard rapid thermal annealing experiments. Fast heating rates resulted in better definition of the silicide lines. Also, better lines were obtained for samples that received already a low-temperature ex situ anneal. A Ti cap layer gave rise to a higher degree of epitaxy in the CoSi2 silicide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000167407200011 Publication Date 2008-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0884-2914;2044-5326; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.673 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.673; 2001 IF: 1.539  
  Call Number UA @ lucian @ c:irua:103926 Serial 1588  
Permanent link to this record
 

 
Author Teodorescu, V.; Nistor, L.; Bender, H.; Steegen, A.; Lauwers, A.; Maex, K.; van Landuyt, J. pdf  doi
openurl 
  Title In situ transmission electron microscopy study of Ni silicide phases formed on (001) Si active lines Type A1 Journal article
  Year (down) 2001 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 90 Issue 1 Pages 167-174  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The formation of Ni silicides is studied by transmission electron microscopy during in situ heating experiments of 12 nm Ni layers on blanket silicon, or in patterned structures covered with a thin chemical oxide. It is shown that the first phase formed is the NiSi2 which grows epitaxially in pyramidal crystals. The formation of NiSi occurs quite abruptly around 400 degreesC when a monosilicide layer covers the disilicide grains and the silicon in between. The NiSi phase remains stable up to 800 degreesC, at which temperature the layer finally fully transforms to NiSi2. The monosilicide grains show different epitaxial relationships with the Si substrate. Ni2Si is never observed. (C) 2001 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000169361100023 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 97 Open Access  
  Notes Approved Most recent IF: 2.068; 2001 IF: 2.128  
  Call Number UA @ lucian @ c:irua:102855 Serial 1587  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: