toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Evans, J.E.; Friedrich, H.; pdf  doi
openurl 
  Title Advanced tomography techniques for inorganic, organic, and biological materials Type A1 Journal article
  Year (down) 2016 Publication MRS bulletin Abbreviated Journal Mrs Bull  
  Volume 41 Issue 41 Pages 516-521  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional (3D) tomography using electrons and x-rays has pushed and expanded our understanding of the micro-and nanoscale spatial organization of inorganic, organic, and biological materials. While a significant impact on the field of materials science has already been realized from tomography applications, new advanced methods are quickly expanding the versatility of this approach to better link structure, composition, and function of complex 3D assemblies across multiple scales. In this article, we highlight several frontiers where new developments in tomography are empowering new science across biology, chemistry, and physics. The five articles that appear in this issue of MRS Bulletin describe some of these latest developments in detail, including analytical electron tomography, atomic resolution electron tomography, advanced recording schemes in scanning transmission electron microscopy (STEM) tomography, cryo-STEM tomography of whole cells, and multiscale correlative tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pittsburgh, Pa Editor  
  Language Wos 000382508100011 Publication Date 2016-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.199 Times cited 12 Open Access  
  Notes J.E.E. acknowledges support from the Department of Energy's Office of Biological and Environmental Research Mesoscale to Molecules Project #66382. Approved Most recent IF: 5.199  
  Call Number UA @ lucian @ c:irua:135689 Serial 4297  
Permanent link to this record
 

 
Author Chen, D.; Goris, B.; Bleichrodt, F.; Heidari Mezerji, H.; Bals, S.; Batenburg, K.J.; de With, G.; Friedrich, H. pdf  url
doi  openurl
  Title The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections Type A1 Journal article
  Year (down) 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 147 Issue Pages 137-148  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In electron tomography, the fidelity of the 3D reconstruction strongly depends on the employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and DART reconstructions are studied with respect to having only a limited number of electrons available for imaging and applying different angular sampling schemes. A well-defined realistic model is generated, which consists of tubular domains within a matrix having slab-geometry. Subsequently, the electron tomography workflow is simulated from calculated tilt-series over experimental effects to reconstruction. In comparison with the model, the fidelity of each reconstruction method is evaluated qualitatively and quantitatively based on global and local edge profiles and resolvable distance between particles. Results show that the performance of all reconstruction methods declines with the total electron dose. Overall, SIRT algorithm is the most stable method and insensitive to changes in angular sampling. TVM algorithm yields significantly sharper edges in the reconstruction, but the edge positions are strongly influenced by the tilt scheme and the tubular objects become thinned. The DART algorithm markedly suppresses the elongation artifacts along the beam direction and moreover segments the reconstruction which can be considered a significant advantage for quantification. Finally, no advantage of TVM and DART to deal better with fewer projections was observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000343157400015 Publication Date 2014-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 42 Open Access OpenAccess  
  Notes Fwo Approved Most recent IF: 2.843; 2014 IF: 2.436  
  Call Number UA @ lucian @ c:irua:119073 Serial 2729  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: