
This item is the archived peer-reviewed author-version of:

The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in
nanocomposite thin-films and sections

Reference:
Chen Delei, Goris Bart, Bleichrodt Folkert, Heidari Mezerji Hamed, Bals Sara, Batenburg Joost, de With
Gijsbertus, Friedrich Heiner.- The properties of SIRT, TVM, and DART for 3D imaging of tubular domains
in nanocomposite thin-films and sections
Ultramicroscopy - ISSN 0304-3991 - 147(2014), p. 137-148 
DOI: http://dx.doi.org/doi:10.1016/j.ultramic.2014.08.005 

Institutional repository IRUA

http://dx.doi.org/doi:10.1016/j.ultramic.2014.08.005
http://anet.uantwerpen.be/irua


0FThe properties of SIRT, TVM, and DART for 3D imaging of tubular domains 

in nanocomposite thin–films and sections 

Delei Chena,b, Bart Gorisc, Folkert Bleichrodtd, Hamed Heidari Mezerjic, Sara Balsc, 

Kees Joost Batenburgd, Gijsbertus de Witha, Heiner Friedricha,* 

a Laboratory of Materials and Interface Chemistry, 

Department of Chemical Engineering and Chemistry, 

Eindhoven University of Technology, Den Dolech 2, 

5612 AZ, Eindhoven, The Netherlands 

b Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX, Eindhoven, The 

Netherlands 

c EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium 

d Centrum Wiskunde & Informatica, Science Park 123, NL-1098XG, Amsterdam, The 

Netherlands 

* Corresponding author: 

  Dr. Heiner Friedrich, Phone: +31-40-247-3041, Email: h.friedrich@tue.nl 

 

 

Highlights 

• Dose and tilt–scheme dependence of SIRT, TVM and DART tomograms are 

quantified 

• SIRT is the most stable method and insensitive to changes in angular sampling. 

• TVM significantly reduces noise but objects become thinned  

• DART markedly suppresses the elongation artifacts 

• No advantage of TVM and DART for fewer projections is observed  
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Abstract 

In electron tomography, the fidelity of the 3D reconstruction strongly depends on the 

employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and 

DART reconstructions are studied with respect to having only a limited number of 

electrons available for imaging and applying different angular sampling schemes. A 

well–defined realistic model is generated, which consists of tubular domains within a 

matrix having slab–geometry. Subsequently, the electron tomography workflow is 

simulated from calculated tilt–series over experimental effects to reconstruction. In 

comparison with the model, the fidelity of each reconstruction method is evaluated 

qualitatively and quantitatively based on global and local edge profiles and resolvable 

distance between particles. Results show that the performance of all reconstruction 

methods declines with the total electron dose. Overall, SIRT algorithm is the most 

stable method and insensitive to changes in angular sampling. TVM algorithm yields 

significantly sharper edges in the reconstruction, but the edge positions are strongly 

influenced by the tilt scheme and the tubular objects become thinned. The DART 

algorithm markedly suppresses the elongation artifacts along the beam direction and 

moreover segments the reconstruction which can be considered a significant 

advantage for quantification. Finally, no advantage of TVM and DART to deal better 

with fewer projections was observed. 

 

Keywords: electron tomography, reconstruction algorithm, simultaneous iterative 

reconstruction technique (SIRT), total variation minimization (TVM), discrete 

algebraic reconstruction (DART), beam-sensitive material 
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1 Introduction 

Electron tomography (ET) has nowadays become a standard tool for materials 2 

research to reveal the three dimensional (3D) morphology of specimens with 

nanometer resolution [1-4]. Knowledge of a materials 3D morphology is critical to 4 

understanding the material properties, such as, e.g., the efficiency of polymer 

photovoltaic cells [5, 6]. ET consists of three basic steps [2]. First, a series of 2D 6 

projections from multiple directions of the object of interest is acquired in a 

transmission electron microscope (TEM). This is conventionally done by tilting the 8 

object over a large angular range at small tilt increments. Second, the series of 

projections are aligned with respect to a common origin and tilt axis, correcting for 10 

unavoidable displacements during data acquisition. Third, the electron tomogram (3D 

intensity map) of the object is reconstructed from the tilt series by numerical 12 

algorithms. 

ET is mainly used for qualitative studies where a 3D visualization of different 14 

nanostructures is required. Nevertheless a strong trend towards obtaining 3D 

quantitative information from electron tomograms is ongoing that is currently often 16 

hampered by the low reconstruction quality [7]. Several challenges impede obtaining 

high–quality reconstructions [8-10]. The most significant challenge is that the tilt 18 

range for ET is limited (often < ±80°) because of the sample, the sample holder or the 

microscope stage [11]. As a consequence, the limited tilt range leads to a missing 20 

angular range of information referred to as “missing wedge” [2, 12]. The 

reconstruction quality is significantly affected by the missing wedge, i.e. elongation in 22 

the reconstruction along the beam direction [13]. Another key challenge is the low 

contrast and low signal–to–noise ratio (SNR) that can be obtained in the projection 24 

images, especially for beam sensitive materials [2, 8, 14]. The reason of low contrast 

is that, e.g., polymers and composites thereof, mainly consist of light elements with 26 

small differences in density or composition. In addition, polymers are often very 

sensitive to electron irradiation and will be shrunk or even bubble during data 28 

acquisition if one goes beyond a tolerable cumulative electron dose [15-17]. Therefore, 

in order to avoid radiation damage and to preserve the structure of the object, only a 30 

limited number of electrons can be used throughout data acquisition, thus, leading to 

low SNR in the projections of the tilt–series. 32 
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To overcome the aforementioned challenges, various methods have been proposed in 

the literature [1, 3, 8]. Instead of a single tilt axis, dual tilt axis has been used during 2 

acquisition, thereby reducing the missing wedge to a “missing pyramid” [18, 19]. 

Nevertheless, the problem of missing information still persists. The ideal tilt range 4 

±90° can be reached by fabricating the material of interest into a needle shaped 

specimen. By mounting the sample in a special specimen holder, an angular tilt range 6 

of 360 degrees can be achieved thus completely removing the missing wedge [20, 21]. 

However, fabrication of a needle–shaped specimen requires materials that are 8 

mechanically stable enough which hampers the application to many polymer 

composites. Finally, to enhance the reconstruction quality, different angular sampling 10 

procedures and reconstruction schemes have been suggested and implemented [22-24]. 

Commonly used reconstruction methods are the weighted backprojection method 12 

(WBP) and iterative methods such as simultaneous iterative reconstruction technique 

(SIRT) [13, 25-27]. The WBP method has been one of the most widely used 14 

algorithms [13, 25]. Apart from high computational efficiency, the major advantage of 

WBP is that the outcome of the reconstruction is thoroughly determined by the 16 

experimental data as all steps in the algorithm are linear [13, 28]. However, the main 

disadvantage of WBP is that the reconstruction quality is sensitive to the limited tilt 18 

range [28]. In contrast, the SIRT method generates reconstructions yielding good 

visual quality from fewer projections and even from noisy data [26, 29]. Therefore, 20 

SIRT gradually becomes an increasingly popular reconstruction method used in 

electron tomography, although it is computationally more expensive. Recently, more 22 

advanced reconstruction algorithms have been proposed, such as the discrete algebraic 

reconstruction technique (DART) [22] and the total variation minimization based 24 

reconstruction technique (TVM) [23]. Using prior knowledge of the specimen such as 

that the specimen contains only a limited number of phases, i.e., a discrete number of 26 

gray levels, aids in solving the ill–posed inversion (reconstruction) problem. For 

example, the DART algorithm actually segments (binarizes) the reconstruction during 28 

the iterative process. DART reconstructions are directly quantifiable and have been 

successfully applied for the 3D characterization of catalytic CuO nanoparticles and 30 

zeolite materials [30, 31]. The TVM method is developed based on compressed 

sensing. It incorporates the prior knowledge that the boundary of the specimen is 32 

sparse in the reconstruction [23]. Using this algorithm, the elongation artifacts and 
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noise in the reconstruction are reduced and the sharpness of the edges is significantly 

improved. The advantages of the TVM method have demonstrated by the 3D 2 

reconstruction of FeO nanoparticles [32] and PbSe/CdSe core–shell nanoparticles [23]. 

The performance of above advanced reconstruction algorithms have been mainly 4 

studied based on experimental data [22, 33] which generally lack the ground truth of 

the specimens. Nevertheless, some studies have incorporated known phantoms or 6 

models into the performance comparison, but these models were based on data that 

are obtained with a very high SNR in the projections [32, 34, 35]. Hence, no study has 8 

included effects of limited electron dose, which we consider the most crucial physical 

limit to 3D imaging of beam sensitive materials. Thus for beam sensitive materials, 10 

detailed studies on the performance of reconstruction algorithms in combination with 

limited electron dose and varying tilt schemes are lacking. 12 

The aim of this work is therefore to fill this gap by evaluating the fidelity of SIRT, 

TVM, and DART reconstructions in dependence of a limited total electron dose and a 14 

variety of possible acquisition schemes. A comparison to WBP will be presented as a 

reference. As model structure we focus on the large range of functional 16 

nanocomposites composed of tubular domains in a matrix with slab-geometry, i.e. 

thin-films or thin–sections. Our approach is built on simulating the entire workflow of 18 

the bright–field ET from projections, over experimental imaging and recording effects 

to 3D reconstructions, finalized by a qualitative and quantitative comparison of the 20 

initial model and the reconstruction. The reconstruction fidelity is first assessed by 

image quality. Subsequently, local and global edge profiles and edge spread functions 22 

are employed to quantify the resolution in the reconstructions. Moreover, we evaluate 

the resolvable separation between particles (connectivity and percolation) which is a 24 

key question for many functional composites such as photovoltaic bulk 

heterojunctions or conductive CNT/polymer nanocomposites. 26 

2 Materials and Methods 

In this section, we first briefly introduce SIRT, TVM and DART, and then present the 28 

simulation approach and evaluation methods [36]. 

2.1 Reconstruction methods 30 
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In iterative methods, the reconstructed object is assumed as an unknown array x. 

According to the measured projections b, a set of algebraic equations can be 2 

formulated Ax = b, where A is a weighting matrix [23, 25, 26]. The elements of the 

weighting matrix A represent the contribution of a specific voxel to each projection 4 

ray. They can be obtained using different interpolation schemes and thus may yield 

slight differences in the final reconstruction [37-39]. In order to obtain a 6 

reconstruction of the object, x has to be extracted from the projection equation based 

on a limited data set. 8 

2.1.1 SIRT 

The SIRT algorithm is an iterative method based on the algebraic reconstruction 10 

technique [25, 26, 29]. The algorithm starts from an initial reconstruction, which is 

usually obtained by simply assuming a uniform data array or by a simple back–12 

projection from the tilt series. The reconstruction is re–projected along the same tilt 

angles as the angles used to acquire projections during the experiment, referred as 14 

forward projection. The error between the re–projections and the measured 

projections are calculated and is referred to as “projection error”, and then 16 

simultaneously back–projected to refine the reconstruction. This process is iterated 

until a stop criterion is reached, conventionally the number of iterations. Using this 18 

method with few iterations, the noise in the reconstruction can be suppressed, yielding 

good looking reconstructions. 20 

2.1.2 TVM 

As mentioned above, TVM in the used implementation is an iterative method based 22 

on compressive sensing [23, 33]. It assumes that the specimen has only a few 

components and that the gradient of the specimen is sparse. Based on this sparsity 24 

assumption, the aim of TVM is to find the reconstructed object which has a minimum 

norm of the discrete gradient, i.e. the total variation. This method is implemented by 26 

simultaneously minimizing the projection error and the total variation of the 

reconstructed object, and can be represented by:  28 

𝒙� = arg min𝒙 �𝑇𝑉(𝒙) + 𝜇
2
‖𝑨𝒙 − 𝒃‖2 �    (1) 
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where the TV(x) is the total variation of the reconstructed object x, μ is a 

regularization parameter, and ‖◦‖2 denotes a sum of squared difference. The projection 2 

error is represented by ‖Ax-b‖. As can be seen from this equation, the regularization 

parameter μ is very important. A large value of regularization parameter μ will result 4 

in a quasi–SIRT reconstruction, in which artifacts from noise and the missing wedge 

may be preserved. A small value of μ will reduce noise in the reconstruction, but 6 

small features in the object will also be removed. Therefore, great care should be 

taken when choosing the value of the regularization parameter. Although the ground 8 

truth is known in the simulation experiments performed in this work, this knowledge 

is not incorporated when estimating a correct value for the penalty parameter yielding 10 

a more realistic workflow. 

2.1.3 DART 12 

DART is an iterative algorithm that was developed for objects which consist of only 

few materials, corresponding to a few distinct grey levels in the reconstruction [22, 14 

40]. This prior knowledge is combined with a continuous iterative reconstruction 

algorithm (such as SIRT) by introducing a discretization step. The algorithm starts 16 

from a SIRT reconstruction to obtain information of grey levels in the reconstructed 

object. A threshold is then selected and applied to segment the reconstruction. 18 

Boundary pixels are detected from the segmented reconstruction, which are all pixels 

that have at least one neighboring pixel in a different segmentation class. The 20 

remaining pixels are referred as non–boundary pixels, and they are assigned to the 

grey levels that correspond to either background or objects. Afterwards, the SIRT 22 

method is employed again, but only boundary pixels are updated in each iteration step. 

The non–boundary pixels remain fixed throughout this process. In this way, the 24 

number of unknown pixels is extremely reduced. The update of the boundary is 

repeated until the method converges. In the end, a reconstruction is obtained, which is 26 

segmented and can be used for further quantification of structural properties. 

2.2 Simulation approach and Evaluation methods 28 

In this section, we will introduce our simulation approach and the evaluation methods 

[36]. As shown in Figure 1, the entire simulation contains of four steps: model 30 
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definition, image formation and recording, reconstruction, and quantitative 

comparison. 2 

 
Figure 1. Flowchart of the simulation approach. First, a well–defined model system is 4 
generated, which consists of a polymer matrix and rod–like nanofillers. Second, TEM images 
of the model are calculated based on mass-thickness contrast with a low–pass filter and noise. 6 
After calculating the tilt series, reconstruction is carried out. In the end, qualitative and 
quantitative comparisons of the reconstruction to the model are implemented to investigate 8 
the performance of reconstruction algorithms. 

2.2.1 Model definition 10 

Our model approximates the structures of a large range of functional nanocomposites, 

such as a bulk heterojunction composed of P3HT nanowires in a PCBM matrix[6, 41] 12 

or carbon nanotubes in a polymer matrix [42].The ingredients of the model system 

therefore consist of a polymer matrix (background) having a slab–geometry and rod–14 

like nanofillers (object), as can be seen in Figure 1 and Figure S1. The rod–like filler, 

such as P3HT nanowires and carbon nanotubes, is simplified to a cylinder with 16 

spherical end caps which has a 200 nm length and 20 nm diameter. The thickness of 

the matrix is 200 nm as conventionally prepared by spin coating (bulk heterojunction) 18 

[6] or by (Cryo–)ultramicrotomy (CNT composite) [43]. In order to bridge the realms 

of medium resolution cryo–electron tomography to high resolution 3D imaging, the 20 

sampling in the model is set to 1 nm/pixel, which we used often in our experimental 

work. 22 

2.2.2 Image formation 
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Our image formation model includes three main steps in electron microscopy: 

electron–specimen interaction, the optical system, and the recording process [44-46].  2 

As an incident beam I0 passes through a specimen with thickness t, the number of 

transmitted electrons owing to electron–specimen interaction decreases exponentially 4 

as a function of object thickness: It = I0 exp(−t/Λt), where Λt is the mean–free–path 

(MFP) length of the specimen [46, 47]. The ideal projection formed by the transmitted 6 

electrons is transferred by the electron optical system of the TEM into the detector 

plane. In cooperation with aberration of the objective and defocus used for imaging, 8 

the optical system is modeled as a low–pass filter in first approximation. The 

transferred projection is thus simulated by the ideal projection with this low–pass 10 

filter, referred as filtered projection. Finally, the filtered projection is recorded by the 

TEM electron detector, i.e., a charge–coupled device (CCD) camera. The recording 12 

process introduces shot noise and CCD noise [48-50]. The intensity of the final 

projection is calculated by adding both shot noise and CCD noise to the filtered 14 

projection. More details can be found in the Supplementary Information (SI), Section 

1.2. 16 

2.2.3 Acquisition parameters and reconstruction 

In order to assess the ability of reconstruction methods dealing with noise, especially 18 

for beam sensitive polymer composites, we employ three different total electron doses 

Itotal, which roughly correspond to electron doses commonly employed for cryo–ET of 20 

vitrified specimens in their native liquid condition (highly beam sensitive, 102 e/Å2), 

for polymers and composites thereof (beam sensitive, 104 e/Å2), and for inorganic 22 

materials (least beam sensitive, 106 e/Å2). For each projection in the tilt series, an 

equal incoming electron I0 dose is assumed, i.e., I0 = Itotal/N, where N is the number of 24 

projections, thus, not taking a dose distribution factor into account. To investigate the 

influence of the angular sampling scheme, three different tilt increments Δθ0 are 26 

studied, i.e. 1° and 5° constant increments, and Saxton scheme of 3° as starting 

increments at zero degree tilt angle [51]. The maximum tilt range is ±65°, which is 28 

commonly used in ET. The main acquisition parameters are listed in Table 1. 
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Table 1: TEM parameters and acquisition schemes used for calculating projections 

Parameter Value 

Acceleration voltage (keV) 300 

Underfocus (μm) −5 

Total electron dose (e/Å2) 102, 104, 106 

Tilt range ±65° 

Tilt increment Constant increment: 1°, 5°, Saxton scheme: 3° 

 2 

The resulting nine tilt–series were reconstructed by SIRT, TVM and DART. In the 

SIRT reconstructions, the number of iteration was 10, 50, and 100 for accumulated 4 

electron dose of 102 e/Å2, 104 e/Å2, and 106 e/Å2, respectively. More details on SIRT 

reconstructions and how the iteration number was selected can be found in the SI, 6 

Section 1.3. In the TVM approach, the regularization parameter μ was optimized for 

each reconstruction based on visual inspection. This is by no means the best approach 8 

but commonly done as better defined criteria are often lacking [52]. The standard 

DART algorithm is utilized with 100 iterations for all the reconstructions [22, 40], and 10 

a global threshold is used for segmentation which is set to the average value (0.5) of 

the background (0) and the particle intensity (1). The volume size for each 12 

reconstruction is 508×508×200 voxels.  

2.2.4 Evaluation methods 14 

Several methods have been proposed to estimate the resolution in ET but no 

straightforward widely accepted approach exists [53-57]. If the reconstruction is from 16 

a tilt series with a tilt range of ±90° around a single–tilt axis (Y direction), the 

attainable resolution has been estimated to dX = πD/N along the X direction [53], 18 

where D is the diameter of the object and N is the number of projections. Nevertheless, 

the limited tilt range in the ET leads to the elongation along the beam direction Z in 20 

the reconstruction. Therefore, the resolution in the Z direction dZ is degraded by an 

elongation factor exz which is a function of the maximum tilt range α [58]: 22 

𝑑𝑧 = 𝑑𝑥𝑒𝑥𝑧 = 𝑑𝑥�
𝛼+sin𝛼 cos𝛼
𝛼−sin𝛼 cos𝛼

      (2). 
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Obviously, above descriptions of the resolution is only based on sampling 

considerations. Since noise and blurring also influence the achievable resolution in the 2 

reconstruction, they need to be considered as well. 

In the present work, edge intensity profiles that encode the effects of dose, imaging 4 

and processing have been used to determine the resolution and, thus, the quality of the 

reconstruction [36, 56]. An edge intensity profile is taken across the background–6 

object edge transition with equal numbers of pixels on each side, which is 20 pixel 

long and 1 pixel wide (Figure 2). The intensities of the ideal edge profile (Figure 2b–8 

Ideal) in the model only contain two grey levels: background (0) and objects (1), and 

the transition occurs at the 10.5 pixel position, referred to as the edge position. These 10 

ideal profiles are broadened and become noisy after reconstruction (Figure 2b–Local). 

More detailed information about the reconstruction, such as the dynamic range a, the 12 

background intensity b, the edge position x0, and the edge steepness k, can be obtained 

from characterization of the reconstructed edge by looking at the reconstructed 14 

profiles. To quantify the edge profiles, an edge spread function (ESF) is defined 

including the above mentioned four parameters.[36, 56] Mathematically, it can be 16 

represented by a continuous sigmoidal function [59], 

𝑆(𝑥) = 1
2
𝑎�1 + �tanh�𝑘(𝑥 − 𝑥0)��� + 𝑏   (3) 18 

In order to find the four unknown parameters, the ESF is fitted to the edge profiles. 

The resolution in the reconstruction can be defined by the full–width–at–half–20 

maximum (FWHM) of the first derivative of the edge profiles, which is the inverse of 

the steepness k: Δr = 1.76/k. In other words, the steepness k is the resolution in the 22 

frequency space. In order to assess the reconstruction quality globally and locally, we 

define two types of edge profiles: a local edge profile which is an individual edge 24 

intensity profile taken directly from a reconstruction with 20 pixel length and 1 pixel 

width, and a global edge profile which is obtained by averaging all the local edge 26 

profiles in the same direction in a reconstruction. 

 28 
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Figure 2. Illustration of the edge intensity profile from the model, which is taken across the 2 
background–object interface. An ideal edge intensity profile is a step profile, 20 pixels long 
and 1 pixel wide, thus the edge position is at 10.5 pixel (indicated by the middle vertical line). 4 
A local edge profile is taken from the reconstruction, and a global edge profile is obtained by 
averaging all the local edge profiles in the same direction. An edge spread function is fitted to 6 
the edge profiles to evaluate the quality of the reconstruction. 

Apart from particle size, the connectivity of objects throughout a volume is of great 8 

interest, as it is often closely related to the functional properties of specimens, e.g., 

conductive network of CNT’s in the polymer nanocomposites. Henceforth, we carry 10 

out such an analysis and study the resolvable separation between particles by 

comparing the intensity profiles across gaps of varying size, referred to as gap 12 

intensity profiles. 

A gap intensity profile is a line intensity profile which is taken from one particle over 14 

the background to another particle, as depicted in Figure 3. Using a similar procedure 

as for obtaining the global edge profile, a global gap profile is calculated by averaging 16 

over all local gap profiles with the same gap width taken from a reconstruction in the 

same direction. In this manner, each reconstruction yields three global gap profiles, 18 
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along the X, Y and Z direction, respectively. In order to find the resolvable separation, 

an inverted Gaussian function is fitted to the global gap profiles, and the gap width is 2 

determined by the full–width–at–half–maximum (FWHM) of the fitted Gaussian. To 

probe for actually resolvable distances between two particles in a reconstruction, four 4 

different gap widths were chosen, i.e. 3 nm, 6 nm, 9 nm, and 12 nm. 

 6 

 
Figure 3. Illustration of the gap intensity profile, which is taken from one particle side over a 8 
background to another particle side. Besides the ideal gap profile with a 6 pixel gap from the 
model (square), an example global gap profile for a SIRT (right triangle), TVM (down 10 
triangle), and DART (up triangle) reconstruction along the X direction are shown. 

3 Results 12 

In the following, we present visual inspection (3.1), evaluation based on global edge 

profiles (3.2), local edge profiles (3.3), and gap profiles (3.4). The projections were 14 

also reconstructed using WBP as reference for quantitative analysis. Further details on 

the WBP parameters can be found in the SI, Section 1.3. For the purpose of 16 

visualization, all the reconstructions are normalized to the same mean density. The 

normalization method is presented in the SI, Section 2.1. 18 

3.1 Reconstruction results  
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The fidelity of the reconstructions is first visually inspected in comparison with the 

model. As shown in Figure 4, there are no significant differences between SIRT, 2 

TVM and DART reconstructions at a cumulative electron dose of 102 e/Å2. All 

reconstructions (Figure 4 and S3) suffer from high noise contributions, leading to low 4 

visibility of the rods. Here SIRT and DART show no directionality of features in the 

XY plane while TVM shows a characteristic horizontal striping which is a result of 6 

breaking up the full 3D dataset into N×2D reconstructions. Although the white bands 

on the left and right of the numerical TVM cross-sections do change the absolute 8 

intensity of the features, they do not affect the quantification. (See SI, Section 2.1 and 

2.2 for a discussion of the effects on quantification). 10 

 
Figure 4. An XY numerical cross section through the model (a), the SIRT (b), the TVM (c), 12 
and the DART (d) reconstructions using the total electron dose of 102 e/Å2, and a tilt 
increment of 1°. Scale bars are 100 nm. 14 
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As expected, reconstructions are notably improved by increasing the total electron 

dose to 104 e/Å2 (Figure 5) and 106 e/Å2 (Figure S4). Compared with the model, it can 2 

be seen that particles in the SIRT reconstruction (Figure 5b) are elongated due to the 

missing wedge, but in the TVM reconstruction (Figure 5c) the tubular domains seem 4 

thinned, a point that will be further discussed in paragraph 3.2.2. Moreover, neither 

SIRT nor TVM algorithms can properly resolve objects whose long axis is 6 

perpendicular to the beam direction Z and the tilt–axis Y. The same holds true for the 

DART algorithm where objects oriented along the X axis are sometimes but not 8 

always reconstructed (unstable behavior). Nevertheless the DART algorithm 

significantly suppresses the elongation artifact along the beam direction (Figure 5d) 10 

and separates neighboring objects well. A 3D volume rendering of these results is 

shown in Figure S5 in the Supplementary Information, illustrating the advantages of 12 

TVM and DART on account of the lowered noise in the reconstruction. 

 14 
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Figure 5. An XZ numerical cross section through the model (a), the SIRT (b), the TVM (c), 2 
and the DART (d) reconstructions using the total electron dose of 104 e/Å2 and a tilt 
increment of 1°. Scale bar is 100 nm. 4 

3.2 Global edge profiles 

In the following, the transitions between tubular domains and matrix in SIRT, TVM, 6 

and DART reconstructions will be quantitatively evaluated. Utilizing the edge spread 

function, we first quantify the quality of reconstructions globally. In each 8 

reconstruction, three global edge profiles along the X, Y, and Z directions are 

calculated by averaging all the local edge intensity profiles along the same direction. 10 

Subsequently, the edge spread function given by Equation (3) is fitted to all the global 

edge profiles. The global edge profiles and the corresponding fitted profiles along 12 

both the X and Z directions are plotted and presented in Figure S6 and S7. The 
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standard errors of the steepness and the edge position and the goodness–of–fit (R2) are 

listed in Table S2. 2 

Figure 6 shows the results of the fitting process focusing on the edge shift 

(Δx0 = x0−10.5) and the steepness (k) as a function of tilt increments and dose. For 4 

completeness, the corresponding results using WBP are also presented in Figure 6. 

For convenience, the edge position x0 is replaced by the edge shift Δx0, which is the 6 

displacement of the edge position in the reconstruction as compared to the model. A 

negative edge shift means the edge moves to the background side which leads to an 8 

increase in object volume, while a positive edge shift indicates that the edge moves 

into the object side which results in a decrease of the object volume. In the following, 10 

we will discuss the results for each algorithm in terms of dose and the acquisition 

scheme. 12 

3.2.1 SIRT 

As shown in Figure 6a,b, the edge position in the SIRT reconstructions along the X 14 

direction are positively shifted (0.5 to 1.0), whereas along the Z direction are 

negatively shifted (−0.5 to −1.0) for all the acquisition schemes. Despite of the 16 

measured edge shifts, effects of the total electron dose and tilt increments are absent, 

rendering the algorithm insensitive and stable with respect to changing acquisition 18 

conditions. The steepness k in SIRT reconstruction generally increases from 0.17 (102 

e/Å2) to 0.21 (104 e/Å2) to 0.23 (106 e/Å2) along the X direction, while from 0.13 (102 20 

e/Å2) to 0.16 (104 e/Å2) to 0.17 (106 e/Å2) along the Z direction, as shown in Figure 

6c,d. This dose effects become clearer when looking at the spatial resolution Δr which 22 

changes, for example, from 13.5 nm (102 e/Å2) to 11.1 nm (104 e/Å2) to 10.4 nm (106 

e/Å2) along the Z direction. At equal total electron doses, the steepness k in the X 24 

direction is independent of the tilt increments (Figure 6c). Along the Z direction 

(Figure 6d) slight variations are observed such that the resolution using a Saxton 3° 26 

tilt–scheme is approximately 0.5 nm better than using 1° increment, and 1 nm better 

than using 5° increments. The elongation factor exz determined from the z vs x size of 28 

the rods at the electron dose 102 e/Å2 is about 1.25, and 1.37 at both the electron dose 

of 104 e/Å2 and 106 e/Å2, less than the value predicted for the elongation of the WBP 30 

point–spread function i.e. exz = 1.42 [58]. 
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Figure 6. Edge shift and steepness of global edge profiles along the X direction (a, c) and the 2 
Z direction (b, d) in the reconstruction at the total electron dose of 102 e/Å2, 104 e/Å2, and 106 
e/Å2. Edge shift (a, b) is the difference of the edge position between the model and the 4 
reconstruction. A negative edge shift means the edge moves to the background side, while a 
positive edge shift means the edge moves to the object side. The standard parameter errors 6 
can be found at Table S2 in the Supplementary Information. S3° denotes the Saxton scheme 
with an angular starting interval of 3°. 8 

3.2.2 TVM 

In the TVM reconstructions, the measured edge positions are strongly influenced by 10 

the tilt increments and the total electron dose (Figure 6a,b). Similar as for SIRT, at a 

total electron dose of 102 e/Å2, the edge position in the X direction is positively 12 

shifted, while in the Z direction it is negatively shifted. In both directions, the edge 

shifts are less than 1.0 nm, regardless of the tilt increments. For higher electron doses, 14 

the edge position is still positively shifted but further away from the original position 

in the X direction, whereas in the Z direction the edge shift becomes positive. It is 16 

interesting that the edge shift is increasing with increasing tilt increments in both X 

and Z directions, indicating that the compressed sensing approaches is significantly 18 

influenced by the tilt increment when a limited electron dose is used. This is contrary 
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to previous results where compressive sensing based approaches are used for the 

reconstruction of nanostructures based on high–angle annular dark–field STEM tilt 2 

series with a higher SNR [23, 35]. As a consequence of the observed edge shifts, the 

size of objects will be underestimated. For example, the volume of a sphere with a 10 4 

nm radius will be reduced by 20%, taking the edge shift from the reconstruction at the 

total electron of 104 e/Å2 with the Saxton 3° tilt increments into account. However, it 6 

must be noted that this underestimation may be largely influenced by a non–optimal 

choice of the regularization parameter. Changing this parameter will yield large 8 

differences and may even result in an overestimation of the observed edge shift. 

Therefore, obtaining an objective approach for determining the optimal penalty 10 

parameter may be crucial in order to obtain accurate quantitative results. 

The steepness, i.e. resolution, in the TVM reconstruction mainly depends on the total 12 

electron dose (Figure 6c,d), improved from 0.18 to 0.30 in the X direction and from 

0.15 to 0.28 in the Z direction for 102 e/Å2 and 104 e/Å2, respectively. Only minor 14 

improvements in steepness are observed from 104 e/Å2 to 106 e/Å2. TVM, as for SIRT 

and WBP, shows only slight changes with tilt increments, and the values for X and Z 16 

only slightly differing resulting in a rather isotropic resolution for this limited ±65° 

tilt–range. 18 

3.2.3 DART 

The observed edge positions in DART reconstructions are mainly related to the total 20 

electron dose (Figure 6a,b). At the electron dose of 102 e/Å2, the edge position in the 

X direction moves to the inside of the object and the shift slightly increases from 1.03 22 

nm to 1.15 nm to 1.36 nm as the tilt increments change from 1°, to Saxton 3°, to 5°. It 

is interesting that, however, the edge shift in the Z direction is negligible, −0.17 – 0.1, 24 

which indicates the elongation effect owing to the missing wedge has been suppressed. 

At total electron doses of 104 e/Å2 and 106 e/Å2, positive edge shifts in the both X and 26 

Z directions are observed. The edge position in the X direction is close to the original 

position, whereas in the Z direction it moves ~ 0.85 nm to the inside of the object, as 28 

shown in Figure 6a,b. Overall, only a minor influence of the tilt increments on the 

edge positions are found. 30 

While individual edge profiles in the DART reconstruction are step profiles on 

account of the binarized reconstruction, the global edge profile nevertheless is an 32 
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average of overall local edge profiles, and thus the global steepness mainly represents 

uncertainty in local edge positions. Hence, as displayed in Figure 6c,d, a steepness of 2 

the global edge smaller than 0.8 is obtained. This is significantly larger than for all 

other reconstruction approaches and highlights the uniqueness of the method. We will 4 

discuss the distribution of local edge positions in the next section. 

3.2.4 WBP 6 

From Figure 6, it can be seen that both the edge position and the steepness of the 

global edge profiles from the WBP reconstruction are barely influenced by the 8 

changes of the total electron dose and the sampling schemes. The reason is that the 

procedure of gaining the global edge profiles by averaging over approximately a 10 

million edge profiles leads to virtually noise–free global edge profiles, though the 

SNR of the reconstruction strongly varies with changes of the total electron dose. The 12 

edge shifts in the X direction are negligible, whereas in the Z direction they are 

shifted to the background side. As expected, the steepness along the X direction (ca. 14 

0.21) is larger than along the Z direction (ca. 0.17). The resulting elongation factor, i.e. 

exz = 1.21, is smaller than the theoretical value for the WBP PSF (1.42). Overall, the 16 

performance of WBP is in line with more advanced approaches looking at the global 

edge profile alone. For more details about the performance of the WBP reconstruction 18 

in terms of the limited electron dose and the acquisition schemes, we refer to 

reference [36]. 20 

3.3 Local edge profile 

Since the global edge profiles are averages of all local edge profiles, characterization 22 

of such profiles mainly reveals overall trends in reconstruction quality. Nevertheless, 

dose related properties are mainly encoded in the local edge profiles. To gain further 24 

knowledge about the behavior of the three reconstruction algorithms in terms of the 

total electron dose, we focus in this section on the statistical characterization of local 26 

edge profiles. To this end, first an edge spread function is fitted to the local edge 

profiles along the X, Y, and Z directions separately. Second, the probability density 28 

distributions of the edge shifts from each reconstruction are obtained and analyzed 

statistically. Note that it is not appropriate to compare the steepness in the DART 30 

reconstruction with the steepness in the SIRT and the TVM reconstruction, as the 
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individual edge profile in the DART reconstruction is a binary profile and therefore 

the steepness is infinitely large. A detailed description of the fitting procedure can be 2 

found in in the SI, Section 2.4 and Figure S8. 

Figure 7 shows the probability density distribution of edge shifts along the X direction 4 

in the SIRT, TVM, DART, and WBP reconstructions, whereas Figures S9 and S10 

present the corresponding distributions along the Z and Y direction, respectively. The 6 

corresponding population mean, standard error of population mean and standard 

deviation are shown in Table S3. Since the standard error of the population mean is 8 

significantly smaller than the differences in edge shift between different 

reconstructions (see table S3), observed differences in edge shift are significant and 10 

interpretable. In general, it is observed that the probability distribution of the edge 

shifts in each reconstruction becomes wider (increasing standard deviation) with a 12 

decreasing total electron dose. 

In the SIRT reconstruction, at an electron dose of 106 e/Å2 (Figure 7a), the 14 

distribution of edge shifts in each direction is a quasi–Gaussian distribution which its 

mean closes to the corresponding global edge shift. Compared to the distribution of 16 

the edge shift in the X direction with the standard deviation σx ≈ 1.69 nm, the 

distribution in the Z direction (Figure S9a) is considerably wider (σz ≈ 2.30 nm), 18 

reflecting the effect of the missing wedge. As the total electron dose decreases to 104 

e/Å2 (Figure 7b), the probability distribution of the edge shifts is still a quasi–20 

Gaussian distribution but broadened further, e.g., with σx ≈ 2.23 nm standard deviation 

for the X direction. At the lowest electron dose of 102 e/Å2 (Figure 7c), however, the 22 

probability distribution of the edge shifts becomes a uniform distribution, leading to a 

large variation in determination of edge positions, e.g. σx = 3.50 nm. Consequently, the 24 

reliability of measurements, such as object size, will be very low. For instance, 

assuming a sphere of 20 nm in diameter reconstructed at a total dose of 102 e/Å2, and 26 

considering the uncertainty along both X, Y and Z direction given by the standard 

deviation of the distribution, will result in sphere volumes between 20 and 220% of 28 

the initial value! Again, only minor influence of the tilt increments on the edge 

positions and the steepness has been observed, which is consistent with the results 30 

from global edge profiles. 
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Figure 7. The probability density distribution of the edge shift ∆x0 characterized from local 2 
edge profiles along the X direction in the SIRT (a–c), TVM (d–f), DART (g–i), and WBP (j–l) 
reconstruction at a total electron dose 106 e/Å2 (a,d,g,j), 104 e/Å2 (b,e,h,k), and 102 e/Å2 4 
(c,f,i,l), with the tilt increments of 1°, 5°, and Saxton 3°. 

In the TVM reconstruction, the probability distribution of edge positions at the total 6 

electron dose of 106 e/Å2 (σx~ 2.06) is similar to the distribution at the electron dose 

of 104 e/Å2 (σx ≈ 2.08 nm), as shown in Figure 7d,e. However, it becomes significantly 8 

widened (σx ≈ 3.35 nm) as the electron dose reduces to 102 e/Å2 (Figure 7f). In 

addition, the variation of edge shifts in the reconstructions at the total electron dose of 10 

104 e/Å2 and 106 e/Å2 slightly increases as the tilt increments become larger. For 

instance, the mean and standard deviation in Figure 7e change from 0.75 ± 1.95 nm, 12 
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via 1.05 ± 2.06nm, to 1.23 ± 2.22nm as increase of the tilt increments from 1°, via 

Saxton 3°, to 5°. 2 

In the DART reconstruction, the probability distribution of edge shifts is slightly 

widened as the total electron dose decreases from 106 e/Å2 to 104 e/Å2, though the 4 

mean edge shifts are similar (Figure 7g,h). Nevertheless, at the total electron dose of 

102 e/Å2, it is not only broadened but also significantly shifted into the object side, e.g. 6 

1.40 ± 2.83 nm along the X direction (Figure 7i). In addition, the tilt increments have 

an influence on the distribution of edge positions at a total electron dose of 104 e/Å2 8 

and 106 e/Å2. Here, the variation using the Saxton 3° angular scheme has the smallest 

and 5° constant increments the largest spread, i.e. σx = 1.67 nm and σx = 2.02 nm in 10 

Figure 7g, respectively. It should be pointed out that the influence of tilt increments is 

negligible in the reconstruction at a total electron dose of 102 e/Å2, as can be seen in 12 

Figure 7i. 

For the WBP reconstruction, Figure 7 shows that the distribution of edge positions is 14 

dramatically broadened as the decrease of the total electron dose. For example, the 

standard deviation of the edge shifts in Z direction changes from 2.44 nm, via 3.68 nm, 16 

to 4.14 nm as the total electron dose reduces from 106 e/Å2, via 104 e/Å2, to 102 e/Å2. 

It should be noted that only minor influence of the tilt increments on the distribution 18 

of edge positions has been observed, as displayed in Figure 7j–l. 

3.4 Gap profile 20 

Figure 8 presents the difference Δw between the measured gap width wm and the 

actual gap width wa along both the X and Z direction, i.e., Δw = wm–wa. A negative 22 

value (Δw < 0) represents a narrowed gap whereas positive values (Δw > 0) represent a 

broadened gap. Here we note that some global gap profiles in the Z direction contain 24 

such low intensity variations that the Gaussian could not be fitted, thus leading to 

blank data fields in Figure 8. Overall, there is a similar trend for all algorithms, 26 

namely an increased precision with increasing gap width. This effect is best seen at a 

total electron dose of 106 e/Å2 (Figure 8a,b) where the measured gap width in the 28 

SIRT, TVM, and WBP reconstructions converge towards the model when the gap 

increases from 3 nm to 12 nm. Generally, 3 nm and 6 nm gaps are overestimated 30 

using the three reconstruction methods. In the SIRT reconstruction, the smallest 

difference between the ideal and measured gap is found in the 12 nm gap, i.e., 32 
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Δwx = 0.5 nm and, Δwz = −0.5 nm. The 9 nm gaps in the WBP are well determined, 

whereas the 12 nm gaps are slightly underestimated. In the TVM reconstruction, the 2 

most accurate result has been found for the 12 nm gaps, but one needs to consider that 

the measured value strongly depends on the applied tilt scheme (especially along the 4 

X direction Figure 8a). In contrast, DART is the most accurate at small gap widths 

and more significantly underestimates 9 nm and 12 nm gaps. As can be seen in Figure 6 

8c,d, similar measurements of gap widths have been obtained for the reconstruction at 

a total electron dose of 104 e/Å2. Here we like to point out that the 3 nm gaps in the Z 8 

direction are barely resolved in the SIRT and WBP reconstructions (Figure 8b,d). 

 10 
Figure 8. The difference between the original and the measured gap width of the gap intensity 
profiles from the reconstruction with the total electron dose of 106 e/Å2 (a, b), 104 e/Å2 (c, d), 12 
and 102 e/Å2 (e, f) along both the X (a, c, e) and Z (b, d, f) direction. Four different gap widths 
are studied, i.e. 3 nm (region 3), 6 nm (region 6), 9 nm (region 9), and 12 nm (region 12). Due 14 
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to too flat or chaotic behavior of the global edge profiles, in some condition the gap width 
cannot be determined, thus, leading to blank data points, for example, for the 3 nm gaps along 2 
the Z direction (f). S3° denotes the Saxton scheme with an angular starting interval of 3°. 

In all the reconstructions at electron doses of 102 e/Å2 (Figure 8e), the measured gap 4 

value converges to the model value when going from 3 nm to 12 nm along the X 

direction. It is found that the most accurate determined measurement is for the 9 nm 6 

gaps in the WBP. Nevertheless, 3 nm gaps in the WBP reconstruction along the X 

direction cannot be resolved because of too noisy data. Along the Z direction, only 9 8 

nm and 12 nm gaps can be determined from all the reconstructions, while the 6 nm 

gaps can only be found in both TVM and DART reconstruction, or with SIRT and 10 

WBP but using a Saxton 3° tilt scheme. Three nanometer gaps along the Z direction 

cannot be determined from any reconstruction at the total electron dose of 102 e/Å2. 12 

4 Discussion and Conclusion 

Although the SIRT, TVM and DART reconstruction methods have been compared 14 

before in the literature [22, 23, 32, 33], these studies are generally based on 

experimental data, lacking a detailed knowledge of the ground truth. In this work, we 16 

have simulated the electron tomography workflow based on a well–defined model of 

tubular domains in a matrix with slab geometry. The model was chosen as it closely 18 

resembles a large range of functional materials, such as a P3HT/PCBM bulk 

heterojunction thin–film or a CNT/polymer nanocomposite thin–section. In particular 20 

we investigated effects of a limited total electron dose and variations in tilt scheme on 

the properties of this three reconstruction methods. Both the advantages and 22 

disadvantages of the SIRT, TVM, and DART are quantitatively analyzed by 

comparing with the ground truth of the model. Our comparisons not only include the 24 

sharpness of the transitions between phases which provides an estimate of the 

achievable resolution, but also the position of interfaces and the size of gaps between 26 

objects which are key parameters in quantification of object morphologies and 

connectivity. 28 

Expectedly, as the electron dose available for imaging decreases, the fidelity of all 

reconstruction methods decreases. We find that the SIRT algorithm is the least 30 

affected by variations in total dose and tilt scheme, which means that the fidelity of 

the SIRT reconstruction is preserved when using fewer projections. This is a clear 32 
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benefit for beam–sensitive specimens and if a large variety of imaging conditions or 

tilt schemes are utilized. The disadvantage is that the SIRT reconstruction suffers 2 

from a low SNR, and thus it needs extra efforts to denoise and segment the 

tomograms before it can be used for quantification. In contrast, TVM significantly 4 

reduces noise and sharpens transitions between materials which enables a simpler and 

easier segmentation of the reconstruction. However, objects in the TVM 6 

reconstruction become thinned as compared to the model, as illustrated by the 

measured edge shifts and the overestimation of gap sizes (Figure S11). Moreover, a 8 

significant dependence of TVM on the applied tilt scheme is observed, which 

indicates that with the presented measures a lower number of images (i.e., larger tilt 10 

increments) is not advised. This is an especially important point as this study cannot 

reproduce the general conclusions that compressive sensing approaches deal better 12 

with fewer projections [32, 33, 35]. The DART provides a binarized reconstruction 

and suppresses the elongation artifacts along the beam direction. 14 

Here it is noteworthy that, at the total electron dose of 102 e/Å2, the WBP yields a 

slightly better global resolution in comparison with the SIRT, TVM, and DART 16 

method, though it is also the noisiest reconstruction. The poor results for TVM and 

DART at this total dose are possibly related to the inappropriate l2–norm in the data fit 18 

term which assumes a Gaussian distribution instead of a Poisson distribution for noise. 

Finally, one advantage of WBP and SIRT are their easier implementation and use, 20 

whereas TVM and DART are sensitive to the reconstruction parameters and require 

expert knowledge for properly setting regularization parameters or ratio of boundary 22 

pixels, respectively. In summary, to determine which of the many possible 

reconstruction approaches, such as WBP [13], SIRT [26], TVM [23], DART [22], 24 

ART [27], EST [60], Directt [61], W–SIRT [62], is best for a particular class of 

samples, a study as the one presented here for tubular domains in a slab matrix should 26 

be carried out.1 

  28 

1 Additional to the aspects discussed, experimental misalignment including magnification changes, 
image rotation, residual lateral and axial shifts, microscope and sample holder as well as alignment 
procedure used, affect the final result in practice. This can be taken into account, e.g. by taking into 
account an additional (Gaussian) distribution for the shifts and rotations, but since the settings for this 
are highly specific, we consider these effects as beyond the scope of the present investigation. 
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1 Materials and methods 

1.1 Model definition 2 

 
Figure S1. The full model system has a slab geometry (top), which is generated by randomly 4 
packing of single rods (bottom left). The rod-like filler particles such as P3HT nanowires or 
CNT’s are approximated by cylinders with spherical end caps, of 200 pixels in length and 20 6 
pixels in diameter with a sampling of 1 nm/pixel. The thickness of the matrix is 200 pixels. 
To ensure that the model covers the entire field of view (512×512) even at the tilt angle of 65°, 8 
the dimension of the full model was extended to 7430 pixels wide in X direction and 1024 
pixels in Y direction (tilt axis). The volume fraction is set to 20% which results in 4360 rods 10 
randomly packed into the matrix. Please note that only the indicated (cut-out) region of 
interest will be reconstructed in electron tomography (bottom right). 12 
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1.2 Image formation  

In electron microscopy, image formation can be sequentially divided into three steps: 2 

electron–specimen interaction, the optical system, and recording using a detector [1-3]. 

As an incident beam I0 passes through a specimen with thickness t, interactions 4 

between them will arise. Sequentially, an initial 2D image (projection), is formed 

from the transmitted electrons, referred as an ideal projection which includes the 6 

information of the 3D specimen. Considering the electron–specimen interaction as 

mass–thickness contrast [3, 4], the intensity of the ideal projection can be calculated 8 

by the equation It = I0 exp(−t/Λt), where Λt is the mean–free–path (MFP) length of the 

specimen. The intensity I0 is assumed as constant and given by the number of 10 

electrons per image, i.e., total dose divided by the number of images in the tilt series. 

According to L. Reimer and H. Kohl, the MFP is determined by the contrast thickness 12 

xk(αo) = ρΛt, which is given by [4]: 
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 
− = + +

  +      Eq. S1 14 

In this equation, αo (12.1 mrad) is the objective aperture, θ0 (17.8 mrad for 300 keV) 

is characteristic angle, Z is the atomic number, ρ is the specimen (P3HT) density (1.1 16 

g/cm3), and xel (114 μg/cm2) is the elastic mean free path. Following this equation, the 

MFP is calculated, Λt = 1087.2 nm. It should be mentioned that in our case of a 200 18 

nm polymer thin film, MFP, 1087.2 nm in P3HT imaged at 300 kV, is much larger 

than the effective beam path at the maximum tilt angle of 65°, thus one can safely 20 

assume that one works in the single scattering regime. 

Next, the ideal projection is imaged by the electron optical system of the TEM into 22 

the detector plane, where the projection is blurred and referred to as filtered projection. 

In simulation, the electron optical system is commonly assumed to act as a 24 

convolution operator with a point spread function (PSF) h(x,y) [1]. Mathematically, 

the filtered projection Ib(x,y) is calculated from the convolution of the ideal projection 26 

It(x,y) with the PSF h(x,y), namely, Ib(x,y) = It(x,y) ⊗ h(x,y), where the symbol ⊗ 

represents convolution. For the sake of simplicity, a Gaussian function is employed 28 

to approximate the PSF of the optical system, namely, 
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h(x,y) = (2πσb
2)−1exp(−(x2+y2)/2σb

2), where the σb is the blurring factor and determines 

the maximum resolution. This blurring factor σb includes two sources. The first source 2 

is from the diffraction–limited resolution σr which is an intrinsic limitation in 

microscopy and determined by the wavelength λ, the focal length and the objective 4 

aperture diameter. According to the Rayleigh criterion [5], the σr can be defined as 

σr = 1.22f λ/D, where f is the focal length and D is the aperture diameter of the 6 

objective. Aberrations in the optical system, such as spherical aberration, chromatic 

aberration, and the applied defocus result in an additional blurring factor σc. This 8 

contribution is, in the first approximation, described by the contrast transfer function 

(CTF): 10 

 2 2
s

1 1π(( ) ( )sin 2 )
4 2

CTF q C z qA q qλ λ− ∆=     Eq. S2 

where q is the spatial frequency in the reciprocal space, Δz is the defocus value, Cs is 12 

the spherical aberration coefficient of the objective lens, and A(q) is the aperture 

function which is again given by the size of the objective aperture, A(q) = 0, if q ≤ b, 14 

otherwise, A(q) = 0, where b = D/(f λ) is the cut–off frequency. Notably, the CTF has a 

oscillatory behavior which results in difficulties of interpreting high resolution 16 

information on account of contrast inversions (see Figure S2).[6] The directly 

interpretable passband extends from the origin to the spatial frequency q0 at which the 18 

first zero crossing of the CTF occurs.[7] Thus the effects of defocus and spherical 

aberration, i.e. the blurring factor σc in the real space domain was for simplicity 20 

assumed as σc = 1/q0. The, total blurring σb can be treated approximately as: 

σb
2 = σr

2+σc
2. The effects of chromatic blur are commonly minimized experimentally 22 

by zero–loss energy filtering and are, therefore, not taken into account. 

Finally, the filtered projection is recorded by the TEM electron detector. The 24 

recording process introduces shot noise and CCD noise in the final image [8-10]. Shot 

noise is Poisson noise generated in the conversion process from electrons into photons 26 

in the scintillator, denoted as Poiss(Ib(x,y)). CCD noise ICCD(x,y) comes in during the 

readout process, resulting from the dark current and readout noise, which is described 28 

by a Gaussian distribution. The level of noise is determined from a dark image of a 

Gatan MSC 794 camera as installed at the TU Eindhoven Cryo–Titan. The intensity 30 
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of the final projection I(x,y) is calculated by adding both shot noise and CCD noise to 

the filtered projection, namely, I(x,y) = Poiss(Ib(x,y)) + ICCD(x,y). 2 

 
Figure S2. Plot of the contrast transfer function excluding spatial and temporal envelopes. The 4 
arrow points to the spatial frequency q0 at which the first zero crossing of CTF occurs. The 
directly interpretable region is from the origin to q0. 6 

 

Table S1. TEM parameters used to calculate projections are based on TU/e Cryo–Titan. 8 

Parameter Symbol  Value  Unit 

Acceleration Energy E  300  keV 

Objective aperture diameter D  70  μm 

Spherical aberration Cs 
 3  mm 

Chromatic aberration Cc 
 3  mm 

Focal length f  2.89  mm 

Under defocus Δz  −5  μm  

CCD noise σ  0.17  e/pixel 

 

1.3 Reconstruction information 10 

In the SIRT reconstructions, the number of iterations was 10, 50, and 100 for 

accumulated electron dose of 102 e/Å2, 104 e/Å2, and 106 e/Å2, respectively. These 12 

different iteration numbers are determined by visual inspection corresponding to our 

experimental experience. As the number of iterations increases, the reconstruction is 14 

gradually fitting to noise instead of the real object, thereby reducing the visibility and 

signal-to-noise ratio (SNR) in the reconstruction. For example, when using 50 16 
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iterations for a dose of 102, the visibility is markedly decreased, and the SNR drops 

from 0.8066 (for 10 iterations) to 0.4986. Additionally, the difference of projection 2 

error (χ2) between 10 iterations and 50 iterations does change only ~ 3%. 

In WBP, to reduce high frequency noise, a low–pass filter with a cut–off frequency 4 

set to 0.3 cycles/pixel and a Gaussian roll–off with sigma set to 0.05 is used, which is 

the same as the filter used in our previous work, see Reference 36 of the manuscript. 6 

According to Crowther’s criterion, the resolution in the reconstruction is πD/N = 

200*π/131 = 4.794 pixels (0.209 cycles/pixel). Therefore, information or fine 8 

structures with a frequency larger than 0.3 cycles/pixel are not interpretable, and the 

cut–off frequency used here (0.3 cycles/pixel) is appropriate, and the cut–off 10 

frequency was chosen accordingly. 

  12 
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2 Results 

2.1 Normalization of reconstructions 2 

For the purpose of displaying all results next to each other in the figures, all raw 

reconstructions have been normalized so that they have the same mean density. For 4 

normalization let yi denotes the grey value at the ith pixel in a raw reconstruction, the 

normalized grey value 𝑦�𝑖 is obtained from 6 

𝑦�𝑖 = 𝐴𝑦𝑖 + 𝐵 

where A = 1/(μ1−μ0) and B = −Aμ0 are scaling factor, and μ1 and μ0 are the mean 

density of objects and background in the raw reconstruction, respectively. Here we 8 

like to emphasize that the normalization procedure does not change the value of the 

derived parameters: steepness k and the edge position x0, determined from the edge 10 

spread function (𝑆(𝑥) = 𝑎
2

[1 + tanh𝑘(𝑥 − 𝑥0)] + 𝑏). 

 12 

Using the edge spread function, we have, 

𝑦𝑖 = 𝑎
2

[1 + tanh𝑘(𝑥𝑖 − 𝑥0)] + 𝑏, 14 

𝑦�𝑖 =
𝑎�
2
�1 + tanh 𝑘�(𝑥𝑖 − 𝑥�0)� + 𝑏� 

With the scaling factor A and B, the normalized grey value can be expressed as: 

𝑦�𝑖 = 𝐴𝑦𝑖 + 𝐵 = 𝐴 �
𝑎
2

[1 + tanh 𝑘(𝑥𝑖 − 𝑥0)] + 𝑏� + 𝐵 

=
𝐴𝑎
2

[1 + tanh𝑘(𝑥𝑖 − 𝑥0)] + 𝐴𝑏 + 𝐵 

=
𝑎�
2
�1 + tanh 𝑘�(𝑥𝑖 − 𝑥�0)� + 𝑏�  

Therefore, 𝑎� = 𝐴𝑎, 𝑏� = 𝐴𝑏 + 𝐵, 𝑘� = 𝑘, and 𝑥�0 = 𝑥0. 16 

Thus, the steepness and the edge position do not change with the normalization 

methods used.  18 
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2.2 Reconstruction results 

 2 
Figure S3. An XZ numerical cross–section through the model (a), the SIRT (b), the TVM (c), 
and the DART (d) reconstructions at the total electron dose 102 e/Å2 and the tilt increments of 4 
1°. 

As shown in Section 2.1 of the SI the absolute values of background (b) and dynamic 6 

range (a) do not affect the quantification results of edge position (x0) and steepness (k). 

The artefact of horizontal striping acts as an extra noise on the edge profile along the 8 

Y direction only, and thus the noise variation along the Y direction is increased. 
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Figure S4. An XZ numerical cross–section through the model (a), the SIRT (b), the TVM (c), 2 
and the DART (d) reconstructions at the total electron dose of 106 e/Å2 and the tilt increments 
of 1°. 4 
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Figure S5. 3D volume rendering of the model (a) and the reconstruction using the SIRT (b), 2 
TVM (c), DART (d), and WBP (e) at the total electron does of 104 e/Å2 and the tilt 
increments of 1°. Because SIRT and WBP reconstructions contain a large number of small 4 
noise features, it results in a foggy or blurred appearance in (b) and (e). Owing to high SNR in 
the TVM reconstruction and segmentation in the DART reconstruction, volume rendering of 6 
TVM and DART reconstructions is more similar to isosurface rendering. 

  8 
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2.3 Global edge profiles 

 2 
Figure S6. The global edge profiles in the SIRT (*), TVM (o), DART (+), and WBP (∆) 
reconstruction along the X direction, and the corresponding fitted line profile (dash lines). S3° 4 
denotes Saxton scheme with angular interval 3°. 
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Figure S7. The global edge profiles in the SIRT (*), TVM (o), DART (+), and WBP (∆) 2 
reconstruction along the Z direction, and the corresponding fitted line profile (dash lines). ). 
S3° denotes Saxton scheme with angular interval 3°. 4 
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Table S2. Standard parameter errors of the steepness and the edge position and the goodness–
of–fit (R2) from the fitting of the global edge profiles in X and Z directions. 2 

  SIRT TVM DART WBP 

X  σk σx0 R2 σk σx0 R2 σk σx0 R2 σk σx0 R2 

102 1° 0.003 0.034 0.9999 0.002 0.027 0.9999 0.003 0.031 0.9999 0.004 0.039 0.9998 

 
3° 0.003 0.042 0.9999 0.002 0.026 0.9999 0.003 0.035 0.9999 0.006 0.050 0.9996 

 
5° 0.004 0.045 0.9998 0.002 0.023 1.0000 0.004 0.041 0.9998 0.006 0.056 0.9996 

104 1° 0.003 0.023 0.9999 0.003 0.020 0.9999 0.006 0.015 0.9999 0.004 0.041 0.9998 

 
3° 0.003 0.025 0.9999 0.004 0.024 0.9999 0.008 0.016 0.9999 0.005 0.043 0.9998 

 
5° 0.003 0.026 0.9999 0.005 0.029 0.9998 0.004 0.012 0.9999 0.004 0.038 0.9998 

106 1° 0.004 0.038 0.9998 0.004 0.022 0.9999 0.015 0.028 0.9996 0.005 0.043 0.9997 

 
3° 0.004 0.039 0.9998 0.003 0.021 0.9999 0.020 0.026 0.9996 0.005 0.044 0.9997 

 5° 0.004 0.037 0.9998 0.005 0.029 0.9998 0.006 0.016 0.9999 0.004 0.042 0.9998 

              
Z 

             
102 1° 0.005 0.080 0.9997 0.005 0.076 0.9997 0.005 0.062 0.9997 0.006 0.073 0.9995 

 3° 0.005 0.078 0.9997 0.006 0.072 0.9996 0.005 0.062 0.9996 0.005 0.055 0.9997 

 
5° 0.005 0.077 0.9997 0.005 0.069 0.9997 0.005 0.059 0.9997 0.006 0.069 0.9996 

104 1° 0.005 0.064 0.9997 0.005 0.035 0.9997 0.012 0.017 0.9998 0.006 0.075 0.9995 

 
3° 0.005 0.061 0.9997 0.006 0.037 0.9997 0.011 0.016 0.9998 0.006 0.077 0.9995 

 
5° 0.005 0.067 0.9997 0.006 0.040 0.9997 0.012 0.022 0.9997 0.006 0.069 0.9995 

106 1° 0.005 0.065 0.9996 0.006 0.032 0.9998 0.014 0.017 0.9998 0.006 0.076 0.9995 

 
3° 0.005 0.063 0.9997 0.005 0.033 0.9998 0.012 0.015 0.9998 0.006 0.077 0.9995 

 
5° 0.005 0.068 0.9997 0.005 0.035 0.9998 0.012 0.020 0.9998 0.006 0.072 0.9995 

 

  4 
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2.4 Procedure for analyzing the local edge profiles: 

The intensity difference between background and object is in some of the local edge 2 

profiles imperceptible. As a result, many profiles cannot be fitted properly and should 

be disregarded. The classification procedure that was used to distinguish between 4 

suitable and non–suitable profiles for the edge spread function (ESF) fitting is 

schematically represented in Figure S8. In the first step we employ the t-test at a 0.05 6 

significance level to examine all N profiles whether a significant difference between 

mean density of background μ0 and object μ1  in an individual edge profile exists, i.e. 8 

whether μ0 < μ1. If the difference is significant, the profile will be fitted to the edge 

spread function to find the four parameters, otherwise, it will be considered as chaotic 10 

and will be disregarded. 

The fitting procedure for the remaining N1 profiles employs the Levenberg-Marquardt 12 

algorithm which is an iterative technique. In most cases proper values for four 

parameters are obtained after 20 − 30 iterations. We therefore set the maximum 14 

number of iterations to 100 and considered all solutions that would not be found after 

100 iterations as unstable fittings and removed them, leaving over N2 profiles. One 16 

should bear in mind that the number of accepted edge profiles is determined by the 

choice of the significance level and the number of the maximum iterations.  18 

Finally, the fitting results are screened with respect to edge position and steepness. 

First, the edge position are restricted in the range (3,18) in order to ensure the edge 20 

profile always includes two phases (background and object) with respect to the 20 

pixels length of the edge profile. Any solution of the edge position not in this range 22 

will be disregarded, leaving over N3 profiles. Furthermore, the FWHM of the first 

derivative of the edge profile should be below 20 pixels because of the 20 pixels 24 

length of the profile. As a result, the minimum steepness, as defined by 

k = 1.7627/FWHM, is k1 = 1.7627/20 ≅ 0.09. The fitted results are divided into two 26 

groups with respect to steepness. The first group is the group of the edge profiles for 

which the steepness is less than k1. In this group, the line profiles have no 28 

distinguishable transition between the background and the object, and therefore they 

will not be discussed further. The second group is the group of the edge profiles for 30 

which the steepness belongs to the range [k1, 10]. Finally, we calculate the probability 

densities distribution for each parameter in groups II. 32 

14 
 



 
Figure S8. Procedure for analyzing the local edge profiles, N in total. Only the N1 profiles 2 
fulfilling the t-test are fitted. Of these, only N2 profiles remain which can be fitted properly 
with less than 100 iterations. The fitted edge profiles then are screened according to the 4 
constraints of edge positions x0 ∈ (3,18), resulting in N3 remaining profiles. In the end, with 
respect to the steepness k, we divide the fitted results into two groups, an example results is 6 
shown on the right. 
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Table S3. The mean edge shifts Δx0, standard error of the population mean (SE), and standard 
deviation σ of local edge profiles.  2 

 
 

  
SIRT 

  
TVM 

  
DART 

  
 

 
X Y Z X Y Z X Y Z 

102 1° Δx0 0.67 0.60 0.34 0.06 0.29 −0.26 1.30 1.12 0.84 
  SE 0.0039 0.0039 0.0039 0.0037 0.0035 0.0037 0.0031 0.0033 0.0033 
 

 σ  3.51 3.39 3.76 3.37 3.02 3.53 2.83 2.92 3.22 
 S3° Δx0 0.64 0.64 0.37 0.15 0.43 −0.15 1.42 1.22 0.92 
  SE 0.0039 0.0039 0.0039 0.0038 0.0035 0.0036 0.0031 0.0033 0.0033 
 

 σ  3.52 3.36 3.72 3.38 3.02 3.51 2.83 2.91 3.19 
 5° Δx0 0.72 0.68 0.35 0.12 0.51 −0.30 1.48 1.28 0.86 
  SE 0.0038 0.0039 0.0039 0.0037 0.0034 0.0036 0.0031 0.0033 0.0034 
 

 σ  3.47 3.36 3.74 3.31 2.95 3.50 2.83 2.90 3.25 
 * Δ𝑥0�����  0.68 0.64 0.35 0.11 0.41 −0.24 1.40 1.21 0.88 
 * 𝑆𝐸���� 0.0039 0.0039 0.0039 0.0037 0.0034 0.0036 0.0031 0.0033 0.0033 
 * 𝜎� 3.50 3.37 3.74 3.35 2.99 3.51 2.83 2.91 3.22 
104 1° Δx0 0.75 0.56 −0.45 0.75 0.67 −0.05 0.05 0.20 0.66 
  SE 0.0025 0.0029 0.0039 0.0022 0.0024 0.0025 0.0022 0.0026 0.0017 
 

 σ  2.25 2.53 3.07 1.95 2.13 2.42 1.95 2.29 1.68 
 S3° Δx0 0.72 0.53 −0.43 1.05 0.97 0.29 0.10 0.22 0.57 
  SE 0.0025 0.0028 0.0031 0.0023 0.0026 0.0026 0.0020 0.0025 0.0017 
 

 σ  2.23 2.46 2.95 2.06 2.23 2.49 1.83 2.20 1.68 
 5° Δx0 0.65 0.45 −0.65 1.23 1.17 0.33 0.13 0.23 0.67 
  SE 0.0024 0.0028 0.0031 0.0025 0.0027 0.0027 0.0023 0.0027 0.0019 
 

 σ  2.20 2.44 2.97 2.22 2.37 2.64 2.05 2.38 1.82 
 * Δ𝑥0�����  0.71 0.51 −0.51 1.01 0.94 0.19 0.09 0.22 0.63 
 * 𝑆𝐸���� 0.0025 0.0028 0.0031 0.0023 0.0026 0.0026 0.0022 0.0026 0.0018 
 * 𝜎� 2.23 2.48 2.99 2.08 2.24 2.51 1.94 2.29 1.73 
106 1° Δx0 0.24 0.07 −0.88 1.16 1.09 0.53 −0.03 0.11 0.76 
  SE 0.0018 0.0023 0.0023 0.0021 0.0026 0.0024 0.0020 0.0026 0.0017 
 

 σ  1.64 1.98 2.24 1.89 2.23 2.34 1.81 2.27 1.66 
 S3° Δx0 0.27 0.08 −0.83 1.33 1.25 0.77 0.03 0.17 0.66 
  SE 0.0018 0.0023 0.0023 0.0022 0.0027 0.0025 0.0019 0.0025 0.0017 
 

 σ  1.62 1.97 2.23 1.99 2.35 2.45 1.67 2.14 1.63 
 5° Δx0 0.23 0.05 −1.05 1.63 1.46 0.82 0.07 0.19 0.76 
  SE 0.0020 0.0024 0.0025 0.0025 0.0029 0.0028 0.0022 0.0027 0.0019 
 

 σ  1.81 2.09 2.43 2.28 2.52 2.66 2.02 2.40 1.80 
 * Δ𝑥0�����  0.24 0.07 -0.92 1.37 1.26 0.71 0.03 0.15 0.73 
 * 𝑆𝐸���� 0.0019 0.0023 0.0024 0.0023 0.0027 0.0026 0.0020 0.0026 0.0018 
 * 𝜎� 1.69 2.01 2.30 2.06 2.37 2.49 1.83 2.27 1.70 

* The averaged edge shifts Δ𝑥0�����, standard error of the population mean 𝑆𝐸����, and standard deviation 𝜎� are 
calculated by averaging the corresponding values at the same electron dose from three different tilt 4 
increments for reference. 
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Figure S9. The probability density distribution of the edge shift ∆x0 characterized from local 2 
edge profiles along the Z direction in the SIRT (a-c), TVM (d-f), DART (g-i), and WBP (j-l) 
reconstruction at a total electron dose 106 e/Å2 (a,d,g,j), 104 e/Å2 (b,e,h,k), and 102 e/Å2 4 
(c,f,i,l), with the tilt increments of 1°, 5°, and Saxton 3°. 
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Figure S10. The probability density distribution of the edge shift ∆x0 characterized from local 2 
edge profiles along the Y direction in the SIRT (a-c), TVM (d-f), DART (g-i), and WBP (j-l) 
reconstruction at a total electron dose 106 e/Å2 (a,d,g,j), 104 e/Å2 (b,e,h,k), and 102 e/Å2 4 
(c,f,i,l), with the tilt increments of 1°, 5°, and Saxton 3°. 
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Figure S11 Volume rendering of the difference between the model and the reconstruction 2 
using (a) SIRT, (b), TVM, (c), DART, and (d) WBP methods. Blue area indicates over-
reconstruction, i.e. particles extended; brown area indicates under-reconstructed, i.e., particles 4 
shrunk.  
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