toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Duden, E.I.; Savaci, U.; Turan, S.; Sevik, C.; Demiroglu, I. pdf  url
doi  openurl
  Title Intercalation of argon in honeycomb structures towards promising strategy for rechargeable Li-ion batteries Type A1 Journal article
  Year (down) 2023 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 35 Issue 8 Pages 085301-85311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract High-performance rechargeable batteries are becoming very important for high-end technologies with their ever increasing application areas. Hence, improving the performance of such batteries has become the main bottleneck to transferring high-end technologies to end users. In this study, we propose an argon intercalation strategy to enhance battery performance via engineering the interlayer spacing of honeycomb structures such as graphite, a common electrode material in lithium-ion batteries (LIBs). Herein, we systematically investigated the LIB performance of graphite and hexagonal boron nitride (h-BN) when argon atoms were sent into between their layers by using first-principles density-functional-theory calculations. Our results showed enhanced lithium binding for graphite and h-BN structures when argon atoms were intercalated. The increased interlayer space doubles the gravimetric lithium capacity for graphite, while the volumetric capacity also increased by around 20% even though the volume was also increased. The ab initio molecular dynamics simulations indicate the thermal stability of such graphite structures against any structural transformation and Li release. The nudged-elastic-band calculations showed that the migration energy barriers were drastically lowered, which promises fast charging capability for batteries containing graphite electrodes. Although a similar level of battery promise was not achieved for h-BN material, its enhanced battery capabilities by argon intercalation also support that the argon intercalation strategy can be a viable route to enhance such honeycomb battery electrodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000899825400001 Publication Date 2022-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649  
  Call Number UA @ admin @ c:irua:193399 Serial 7313  
Permanent link to this record
 

 
Author Demiroglu, I.; Karaaslan, Y.; Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C. pdf  url
doi  openurl
  Title Computation of the thermal expansion coefficient of graphene with Gaussian approximation potentials Type A1 Journal article
  Year (down) 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 26 Pages 14409-14415  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Direct experimental measurement of thermal expansion coefficient without substrate effects is a challenging task for two-dimensional (2D) materials, and its accurate estimation with large-scale ab initio molecular dynamics is computationally very expensive. Machine learning-based interatomic potentials trained with ab initio data have been successfully used in molecular dynamics simulations to decrease the computational cost without compromising the accuracy. In this study, we investigated using Gaussian approximation potentials to reproduce the density functional theory-level accuracy for graphene within both lattice dynamical and molecular dynamical methods, and to extend their applicability to larger length and time scales. Two such potentials are considered, GAP17 and GAP20. GAP17, which was trained with pristine graphene structures, is found to give closer results to density functional theory calculations at different scales. Further vibrational and structural analyses verify that the same conclusions can be deduced with density functional theory level in terms of the reasoning of the thermal expansion behavior, and the negative thermal expansion behavior is associated with long-range out-of-plane phonon vibrations. Thus, it is argued that the enabled larger system sizes by machine learning potentials may even enhance the accuracy compared to small-size-limited ab initio molecular dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672734100027 Publication Date 2021-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:179850 Serial 7719  
Permanent link to this record
 

 
Author Demiroglu, I.; Sevik, C. url  doi
openurl 
  Title Extraordinary negative thermal expansion of two-dimensional nitrides : a comparative ab initio study of quasiharmonic approximation and molecular dynamics simulations Type A1 Journal article
  Year (down) 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 8 Pages 085430  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thermal expansion behavior of two-dimensional (2D) nitrides and graphene were studied by ab initio molecular dynamics (MD) simulations as well as quasiharmonic approximation (QHA). Anharmonicity of the acoustic phonon modes are related to the unusual negative thermal expansion (NTE) behavior of the nitrides. Our results also hint that direct ab initio MD simulations are a more elaborate method to investigate thermal expansion behavior of 2D materials than the QHA. Nevertheless, giant NTE coefficients are found for h-GaN and h-AlN within the covered temperature range 100-600 K regardless of the chosen computational method. This unusual NTE of 2D nitrides is reasoned with the out-of-plane oscillations related to the rippling behavior of the monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620346100007 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176671 Serial 7956  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Peeters, F.M.; Çakir, D. pdf  url
doi  openurl
  Title Assessment of sulfur-functionalized MXenes for li-ion battery applications Type A1 Journal article
  Year (down) 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 39 Pages 21293-21304  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The surface termination of MXenes greatly determines the electrochemical properties and ion kinetics on their surfaces. So far, hydroxyl-, oxygen-, and fluorine-terminated MXenes have been widely studied for energy storage applications. Recently, sulfur-functionalized MXene structures, which possess low diffusion barriers, have been proposed as candidate materials to enhance battery performance. We performed first-principles calculations on the structural, stability, electrochemical, and ion dynamic properties of Li-adsorbed sulfur-functionalized groups 3B, 4B, 5B, and 6B transition-metal (M)-based MXenes (i.e., M2CS2 with M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W). We performed phonon calculations, which indicated that all of the above M2CS2 MXenes, except for Sc, are dynamically stable at T = 0 K. The ground-state structure of each M2CS2 monolayer depends on the type of M atom. For instance, while sulfur prefers to sit at the FCC site on Ti2CS2, it occupies the HCP site of Cr-based MXene. We determined the Li adsorption configurations at different concentrations using the cluster expansion method. The highest maximum open-circuit voltages were computed for the group 4B element (i.e., Ti, Zr, and Hf)-based M2CS2, which are larger than 2.1 V, while their average voltages are approximately 1 V. The maximum voltage for the group 6B element (i.e., Cr, Mo, W)-based M2CS2 is less than 1 V, and the average voltage is less than 0.71 V. We found that S functionalization is helpful for capacity improvements over the O-terminated MXenes. In this respect, the computed storage gravimetric capacity may reach up to 417.4 mAh/g for Ti2CS2 and 404.5 mAh/g for V2CS2. Ta-, Cr-, Mo-, and W-based M2CS2 MXenes show very low capacities, which are less than 100 mAh/g. The Li surface diffusion energy barriers for all of the considered MXenes are less than 0.22 eV, which is favorable for high charging and discharging rates. Finally, ab initio molecular dynamic simulations performed at 400 K and bond-length analysis with respect to Li concentration verify that selected promising systems are robust against thermally induced perturbations that may induce structural transformations or distortions and undesirable Li release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577151900008 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 15 Open Access  
  Notes ; Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118F512 and the Air Force Office of Scientific Research under award no. FA9550-19-1-7048. This work was performed in part at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118C026. ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:172693 Serial 6452  
Permanent link to this record
 

 
Author Yorulmaz, U.; Demiroglu, I.; Cakir, D.; Gulseren, O.; Sevik, C. doi  openurl
  Title A systematicalab-initioreview of promising 2D MXene monolayers towards Li-ion battery applications Type A1 Journal article
  Year (down) 2020 Publication JPhys Energy Abbreviated Journal  
  Volume 2 Issue 3 Pages 032006  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional materials have been attracting increasing interests because of their outstanding properties for Lithium-ion battery applications. In particular, a material family called MXenes (Mn+1Cn, where n = 1, 2, 3) have been recently attracted immense interest in this respect due to their incomparable fast-charging properties and high capacity promises. In this article, we review the state-of-the-art computational progress on Li-ion battery applications of MXene materials in accordance with our systematical DFT calculations. Structural, mechanical, dynamical, and electrical properties of 20 distinct MXene (M: Sc, Ti, V, Cr, Nb, Mo, Hf, Ta, W, and Zr) have been discussed. The battery performances of these MXene monolayers are further investigated by Li-ion binding energies, open circuit voltage values, and Li migration energy barriers. The experimental and theoretical progress up to date demonstrates particularly the potential of non-terminated or pristine MXene materials in Li ion-storage applications. Stability analyses show most of the pristine MXenes should be achievable, however susceptible to the development progress on the experimental growth procedures. Among pristine MXenes, Ti2C, V2C, Sc2C, and Zr2C compounds excel with their high charge/discharge rate prospect due to their extremely low Li diffusion energy barriers. Considering also their higher predicted gravimetric capacities, Sc, Ti, V, and Zr containing MXenes are more promising for their utilization in energy storage applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569868600001 Publication Date 2020-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2515-7655 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.9 Times cited Open Access  
  Notes Approved Most recent IF: 6.9; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:193748 Serial 7399  
Permanent link to this record
 

 
Author Sar, H.; Ozden, A.; Demiroglu, I.; Sevik, C.; Perkgoz, N.K.; Ay, F. doi  openurl
  Title Long-Term Stability Control of CVD-Grown Monolayer MoS2 Type A1 Journal article
  Year (down) 2019 Publication Physica status solidi: rapid research letters Abbreviated Journal  
  Volume 13 Issue 7 Pages 1800687  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural stability of 2D transition metal dichalcogenide (TMD) formations is of particular importance for their reliable device performance in nano-electronics and opto-electronics. Recent observations show that the CVD-grown TMD monolayers are likely to encounter stability problems such as cracking or fracturing when they are kept under ambient conditions. Here, two different growth configurations are investigated and a favorable growth geometry is proposed, which also sheds light onto the growth mechanism and provides a solution for the stability and fracture formation issues for TMDs specifically for MoS2 monolayers. It is shown that 18 months naturally and thermally aged MoS2 monolayer flakes grown using specifically developed conditions, retain their stability. To understand the mechanism of the structural deterioration, two possible effective mechanisms, S vacancy defects and growth-induced tensile stress, are assessed by the first principle calculations where the role of S vacancy defects in obtaining oxidation resistant MoS2 monolayer flakes is revealed to be rather more critical. Hence, these simulations, time-dependent observations and thermal aging experiments show that durability and stability of 2D MoS2 flakes can be controlled by CVD growth configuration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477671800009 Publication Date 2019-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193784 Serial 8184  
Permanent link to this record
 

 
Author Demiroglu, I.; Peeters, F.M.; Gulseren, O.; Cakir, D.; Sevik, C. doi  openurl
  Title Alkali metal intercalation in MXene/graphene heterostructures : a new platform for ion battery applications Type A1 Journal article
  Year (down) 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 10 Issue 4 Pages 727-734  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The adsorption and diffusion of Na, K, and Ca atoms on MXene/graphene heterostructures of MXene systems Sc2C(OH)(2), Ti2CO2, and V2CO2 are systematically investigated by using first-principles methods. We found that alkali metal intercalation is energetically favorable and thermally stable for Ti2CO2/graphene and V2CO2/graphene heterostructures but not for Sc2C(OH)(2). Diffusion kinetics calculations showed the advantage of MXene/graphene heterostructures over sole MXene systems as the energy barriers are halved for the considered alkali metals. Low energy barriers are found for Na and K ions, which are promising for fast charge/discharge rates. Calculated voltage profiles reveal that estimated high capacities can be fully achieved for Na ion in V2CO2/graphene and Ti2CO2/graphene heterostructures. Our results indicate that Ti2CO2/graphene and V2CO2/graphene electrode materials are very promising for Na ion battery applications. The former could be exploited for low voltage applications while the latter will be more appropriate for higher voltages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459948800005 Publication Date 2019-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited 67 Open Access  
  Notes ; We acknowledge the support from the TUBITAK (116F080) and the BAGEP Award of the Science Academy. Part of this work was supported by the FLAG -ERA project TRANS-2D-TMD. A part of this work was supported by University of North Dakota Early Career Award (Grant number: 20622-4000-02624). We also acknowledge financial support from ND EPSCoR through NSF grant OIA-1355466. Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and Computational Research Center (HPC Linux cluster) at the University of North Dakota. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. ; Approved Most recent IF: 9.353  
  Call Number UA @ admin @ c:irua:158618 Serial 5194  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Cakir, D. doi  openurl
  Title Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules Type A1 Journal article
  Year (down) 2019 Publication ACS applied energy materials Abbreviated Journal  
  Volume 2 Issue 2 Pages 1251-1258  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we demonstrated that high lithium storage capacity and fast kinetics are achieved for Ti3C2O2 by preintercalating organic molecules. As a proof-of-concept, two different quinone molecules, namely 1,4-benzoquinone (C6H4O2) and tetrafluoro-1,4-benzoquinone (C6F4O2) were selected as the molecular linkers to demonstrate the feasibility of this interlayer engineering strategy for energy storage. As compared to Ti3C2O2 bilayer without linker molecules, our pillared structures facilitate a much faster ion transport, promising a higher charge/discharge rate for Li. For example, while the diffusion barrier of a single Li ion within pristine Ti3C2O2 bilayer is at least 1.0 eV, it becomes 0.3 eV in pillared structures, which is comparable and even lower than that of commercial materials. At high Li concentrations, the calculated diffusion barriers are as low as 0.4 eV. Out-of-plane migration of Li ions is hindered due to large barrier energy with a value of around 1-1.35 eV. Concerning storage capacity, we can only intercalate one monolayer of Li within pristine Ti3C2O2 bilayer. In contrast, pillared structures offer significantly higher storage capacity. Our calculations showed that at least two layers of Li can be intercalated between Ti3C2O2 layers without forming bulk Li and losing the pillared structure upon Li loading/unloading. A small change in the in-plane lattice parameters (<0.5%) and volume (<1.0%) and ab initio molecular dynamics simulations prove the stability of the pillared structures against Li intercalation and thermal effects. Intercalated molecules avoid the large contraction/expansion of the whole structure, which is one of the key problems in electrochemical energy storage. Pillared structures allow us to realize electrodes with high capacity and fast kinetics. Our results open new research paths for improving the performance of not only MXenes but also other layered materials for supercapacitor and battery applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459948900037 Publication Date 2019-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193759 Serial 7414  
Permanent link to this record
 

 
Author Kocabas, T.; Ozden, A.; Demiroglu, I.; Cakir, D.; Sevik, C. doi  openurl
  Title Determination of Dynamically Stable Electrenes toward Ultrafast Charging Battery Applications Type A1 Journal article
  Year (down) 2018 Publication The journal of physical chemistry letters Abbreviated Journal  
  Volume 9 Issue 15 Pages 4267-4274  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Electrenes, an atomically thin form of layered electrides, are very recent members of the 2D materials family. In this work, we employed first principle calculations to determine stable, exfoliatable, and application-promising 2D electrene materials among possible M2X compounds, where M is a group II-A metal and X is a nonmetal element (C, N, P, As, and Sb). The promise of stable electrene compounds for battery applications is assessed via their exfoliation energy, adsorption properties, and migration energy barriers toward relevant Li, Na, K, and Ca atoms. Our calculations revealed five new stable electrene candidates in addition to previously known Ca2N and Sr2N. Among these seven dynamically stable electrenes, Ba2As, Ba2P, Ba2Sb, Ca2N, Sr2N, and Sr2P are found to be very promising for either K or Na ion batteries due to their extremely low migration energy barriers (5-16 meV), which roughly demonstrates 105 times higher mobility than graphene and two to four times higher mobility than other promising 2D materials such as MXene (Mo2C).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440956500020 Publication Date 2018-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193765 Serial 7779  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: