toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pereira, J.M.; Peeters, F.M.; Chaves, A.; Farias, G.A. pdf  doi
openurl 
  Title Klein tunneling in single and multiple barriers in graphene Type A1 Journal article
  Year (down) 2010 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 25 Issue 3 Pages 033002,1-033002,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We review the transmission properties of carriers interacting with potential barriers in graphene. The tunneling of electrons and holes in quantum structures in graphene is found to display features that are in marked contrast with those of other systems. In particular, the interaction between the carriers with electrostatic potential barriers can be related to the propagation of electromagnetic waves in media with negative refraction indices, also known as metamaterials. This behavior becomes evident as one calculates the time evolution of wavepackets propagating across the barrier interface. In addition, we discuss the effect of trigonal warping on the tunneling through potential barriers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000274318300004 Publication Date 2010-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242;1361-6641; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited 83 Open Access  
  Notes ; We want to acknowledge our collaborators in this work: P Vasilopoulos and M Barbier. This work was supported by the Brazilian Council for Research (CNPq), the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 2.305; 2010 IF: 1.333  
  Call Number UA @ lucian @ c:irua:80961 Serial 1764  
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Chaves, A.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Simplified model for the energy levels of quantum rings in single layer and bilayer graphene Type A1 Journal article
  Year (down) 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 4 Pages 045431,1-045431,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within a minimal model, we present analytical expressions for the eigenstates and eigenvalues of carriers confined in quantum rings in monolayer and bilayer graphene. The calculations were performed in the context of the continuum model by solving the Dirac equation for a zero width ring geometry, i.e., by freezing out the carrier radial motion. We include the effect of an external magnetic field and show the appearance of Aharonov-Bohm oscillations and of a nonzero gap in the spectrum. Our minimal model gives insight on the energy spectrum of graphene-based quantum rings and models different aspects of finite width rings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277186000010 Publication Date 2010-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 76 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Bilateral program between Flanders and Brazil, and the Brazilian Council for Research (CNPq). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82866 Serial 3005  
Permanent link to this record
 

 
Author Chaves, A.; Farias, G.A.; Peeters, F.M.; Szafran, B. url  doi
openurl 
  Title Wave packet dynamics in semiconductor quantum rings of finite width Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 12 Pages 125331,1-125331,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The time evolution of a wave packet injected into a semiconductor quantum ring is investigated in order to obtain the transmission and reflection probabilities. Within the effective-mass approximation, the time-dependent Schrödinger equation is solved for a system with nonzero width of the ring and leads and finite potential-barrier heights, where we include smooth lead-ring connections. In the absence of a magnetic field, an analysis of the projection of the wave function over the different subband states shows that when the injected wave packet is within a single subband, the junction can scatter this wave packet into different subbands but remarkably at the second junction the wave packet is scattered back into the subband state of the incoming wave packet. If a magnetic field is applied perpendicularly to the ring plane, transmission and reflection probabilities exhibit Aharonov-Bohm (AB) oscillations and the outgoing electrons may end up in different subband states from those of the incoming electrons. Localized impurities, placed in the ring arms, influence the AB oscillation period and amplitude. For a single impurity or potential barrier of sufficiently strong strength, the period of the AB oscillations is halved while for two impurities localized in diametrically opposite points of the ring, the original AB period is recovered. A theoretical investigation of the confined states and time evolution of wave packets in T wires is also made, where a comparison between this system and the lead-ring junction is drawn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000270383300098 Publication Date 2009-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 40 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79231 Serial 3906  
Permanent link to this record
 

 
Author Ramos, A.C.A.; Chaves, A.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Electronic states above a helium film suspended on a ring-shaped substrate Type A1 Journal article
  Year (down) 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue 4 Pages 045415,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000252863100117 Publication Date 2008-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:67889 Serial 1006  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: