|   | 
Details
   web
Records
Author Zhang, Z.; Chen, X.; Shi, X.; Hu, Y.; Huang, J.; Liu, S.; Ren, Z.; Huang, H.; Han, G.; Van Tendeloo, G.; Tian, H.
Title Morphotropic phase boundary in pure perovskite lead titanate at room temperature Type A1 Journal article
Year (down) 2022 Publication Materials Today Nano Abbreviated Journal
Volume 20 Issue Pages 100275-5
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract For many decades, great efforts have been devoted to pursue a large piezoelectric response by an intelligent design of morphotropic phase boundaries (MPB) in solid solutions, where tetragonal (T) and rhombohedral (R) structures coexist. For example, classical PbZrxTi1-xO3 and Pb(Mg1/3Nb2/3)O-3-PbTiO3 single crystals demonstrate a giant piezoelectric response near MPB. However, as the end member of these solids, perovskite-structured PbTiO3 always adopts the T phase at room temperature. Here, we report a pathway to create room temperature MPB in a single-phase PbTiO3. The uniaxial stress along the c-axis drives a T-R phase transition bridged by a monoclinic (M) phase, which facilitates a polarization rotation in the monodomain PbTiO3. Meanwhile, we demonstrate that the coexistence of T and R phases at room temperature can be achieved via an extremely mismatched heterointerface system. The uniaxial pressure is proved as an efficient way to break the inherent symmetry and able to substantially tailor the phase transition temperature Tc. These findings provide new insights into MPB, offering the opportunity to explore the giant piezoelectric response in single-phase materials. (c) 2022 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000906548600002 Publication Date 2022-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2588-8420 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 10.3
Call Number UA @ admin @ c:irua:193477 Serial 7324
Permanent link to this record
 

 
Author Ni, B.; Mychinko, M.; Gómez‐Graña, S.; Morales‐Vidal, J.; Obelleiro‐Liz, M.; Heyvaert, W.; Vila‐Liarte, D.; Zhuo, X.; Albrecht, W.; Zheng, G.; González‐Rubio, G.; Taboada, J.M.; Obelleiro, F.; López, N.; Pérez‐Juste, J.; Pastoriza‐Santos, I.; Cölfen, H.; Bals, S.; Liz‐Marzán, L.M.
Title Chiral Seeded Growth of Gold Nanorods Into 4‐Fold Twisted Nanoparticles with Plasmonic Optical Activity Type A1 Journal article
Year (down) 2022 Publication Advanced materials Abbreviated Journal Adv Mater
Volume Issue Pages 2208299
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology might hold the key to the practical utilization of these materials. We describe herein an optimized chiral growth method to prepare 4-fold twisted gold nanorods, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges were found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl4, in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent. From detailed electron microscopy analysis of the crystallographic structures, we propose that dissymmetry results from the development of chiral facets in the form of protrusions (tilted ridges) on the initial nanorods, eventually leading to a twisted shape. The role of cysteine is attributed to assisting enantioselective facet evolution, which is supported by density functional theory simulations of the surface energies, modified upon adsorption of the chiral molecule. The development of R-type and S-type chiral structures (small facets, terraces, or kinks) would thus be non-equal, removing the mirror symmetry of the Au NR and in turn resulting in a markedly chiral morphology with high plasmonic optical activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000888886000001 Publication Date 2022-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 35 Open Access OpenAccess
Notes This work was supported by the MCIN/AEI/10.13039/501100011033 (Grants PID2019-108954RB-I00, PID2020-117371RA-I00, PID2020-117779RB-I00, and Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency Grant No. MDM-2017-0720), Xunta de Galicia/FEDER (Grant GRC ED431C 2020/09) and the European Regional Development Fund (ERDF). M.M., W.H. and S.B. acknowledge financial support from the European Commission under the Horizon 2020 Programme by ERC Consolidator grant no. 815128 (REALNANO). W.A. acknowledges financial support from the research program of AMOLF, which is partly financed by the Dutch Research Council (NWO). J. M.-V. and N. L. thank the Spanish Ministry of Science and Innovation for financial support (RTI2018- 101394-B-I00 and Severo Ochoa Grant MCIN/AEI/10.13039/501100011033 CEX2019-000925-S) and the Barcelona Supercomputing Center-MareNostrum (BSC-RES) for providing generous computer resources. S.G.-G. acknowledges the MCIN. B. N. acknowledges a postdoctoral fellowship of the Alexander von Humboldt Foundation. G. G.-R. acknowledges the Deutsche Forschungsgemeinschaft (GO 3526/1-1) for financial support. H.C. thanks Deutsche Forschungsgemeinschaft (DFG) SFB 1214 project B1 for funding. G.C-Z. acknowledges National Natural Science Foundation of China (Grant No. 21902148). Approved Most recent IF: 29.4
Call Number EMAT @ emat @c:irua:191808 Serial 7115
Permanent link to this record
 

 
Author Lu, X.P.; Bruggeman, P.J.; Reuter, S.; Naidis, G.; Bogaerts, A.; Laroussi, M.; Keidar, M.; Robert, E.; Pouvesle, J.-M.; Liu, D.W.; Ostrikov, K.(K.)
Title Grand challenges in low temperature plasmas Type A1 Journal article
Year (down) 2022 Publication Frontiers in physics Abbreviated Journal
Volume 10 Issue Pages 1040658-12
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. In this paper, we will discuss the challenges being faced in the field of LTPs, in particular for atmospheric pressure plasmas, with a focus on health, energy and sustainability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000878212000001 Publication Date 2022-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Additional Links UA library record; WoS full record
Impact Factor 3.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.1
Call Number UA @ admin @ c:irua:192173 Serial 7267
Permanent link to this record
 

 
Author Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.Id; De Wael, K.
Title Electrochemical detection of illicit drugs in oral fluid : potential for forensic drug testing Type A1 Journal article
Year (down) 2022 Publication Electrochimica acta Abbreviated Journal
Volume 2022 Issue 436 Pages 141309-141315
Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Illicit drugs continue to pose a serious threat to society and public health. Drug (ab)use is linked to organised crime and violence. Therefore, to fight the so-called war on drugs, police and law enforcement agencies need to be equipped with accurate and efficient sensors for the detection of illicit drugs and drug use. Even though colour tests (for powders) and lateral flow immunoassays (for biological samples) lack accuracy, they are relied upon for fast and easy on-site detection. Alternatively, in recent years, there has been an increasing interest in electrochemical sensors as a promising technique for the rapid and accurate on-site detection of illicit drugs. While a myriad of literature exists on the use of electrochemical sensors for drug powder analysis, literature on their use for the detection of drug use in biological samples is scarce. To this end, this review presents an overview of strategies for the electrochemical detection of illicit drugs in oral fluid. First, pharmacokinetics of drugs in oral fluid and the legal limit dilemma regarding the analytical cut-offs for roadside drug detection tests are elaborated to present the reader with the background knowledge required to develop such a test. Subsequently, an overview of electrochemical strategies developed for the detection of illicit drugs in oral fluid is given. Importantly, key challenges to address in the development of roadside tests are highlighted to improve the design of the next electrochemical devices and to bring them to the field. Overall, electrochemical sensors for illicit drugs detection in oral fluid show promise to disrupt current strategies for roadside testing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000882442300001 Publication Date 2022-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:191107 Serial 8855
Permanent link to this record
 

 
Author Wang, D.; Hermes, M.; Najmr, S.; Tasios, N.; Grau-Carbonell, A.; Liu, Y.; Bals, S.; Dijkstra, M.; Murray, C.B.; van Blaaderen, A.
Title Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement Type A1 Journal article
Year (down) 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 6001-6012
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoplatelets offer many possibilities to construct advanced materials due to new properties associated with their (semi)two-dimensional shapes. However, precise control of both positional and orientational order of the nanoplatelets in three dimensions, which is required to achieve emerging and collective properties, is challenging to realize. Here, we combine experiments, advanced electron tomography and computer simulations to explore the structure of supraparticles self-assembled from nanoplatelets in slowly drying emulsion droplets. We demonstrate that the rich phase behaviour of nanoplatelets, and its sensitivity to subtle changes in shape and interaction potential can be used to guide the self-assembly into a wide range of different structures, offering precise control over both orientation and position order of the nanoplatelets. Our research is expected to shed light on the design of hierarchically structured metamaterials with distinct shape- and orientation- dependent properties. Nanoplatelets can be used as anisotropic building blocks for constructing novel optoelectronic materials. Here, Wang et al. show a route of assembling nanoplatelets with controllable positional and orientational order in three dimensions facilitated by the surface tension of drying emulsion droplets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000867312100031 Publication Date 2022-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 7 Open Access OpenAccess
Notes We thank A. Kadu, M. Chiappini, F. Rabouw, S. Paliwal, X. Xie, C. Xia and Z. Wang for fruitful discussions. D.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union's Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. M.H. was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). Y.L. acknowledges the Sustainability project between the faculties of Science and Geosciences of Utrecht University. M.D. acknowledges financial support from European Research Council (Grant No. ERC-2019-ADV-H2020 884902 SoftML). S.B. acknowledges financial support from ERC Consolidator Grant No. 815128 REALNANO. C.B.M. acknowledges support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. The authors acknowledge the EM square center at Utrecht University for the access to the microscopes. Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:191387 Serial 7214
Permanent link to this record
 

 
Author De Backer, A.; Van Aert, S.; Faes, C.; Arslan Irmak, E.; Nellist, P.D.; Jones, L.
Title Experimental reconstructions of 3D atomic structures from electron microscopy images using a Bayesian genetic algorithm Type A1 Journal article
Year (down) 2022 Publication N P J Computational Materials Abbreviated Journal npj Comput Mater
Volume 8 Issue 1 Pages 216
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We introduce a Bayesian genetic algorithm for reconstructing atomic models of monotype crystalline nanoparticles from a single projection using Z-contrast imaging. The number of atoms in a projected atomic column obtained from annular dark field scanning transmission electron microscopy images serves as an input for the initial three-dimensional model. The algorithm minimizes the energy of the structure while utilizing a priori information about the finite precision of the atom-counting results and neighbor-mass relations. The results show promising prospects for obtaining reliable reconstructions of beam-sensitive nanoparticles during dynamical processes from images acquired with sufficiently low incident electron doses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000866500900001 Publication Date 2022-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2057-3960 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A. and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N) and a postdoctoral grant to A.D.B. L.J. acknowledges Science Foundation Ireland (SFI – grant number URF/RI/191637), the Royal Society, and the AMBER Centre. The authors acknowledge Aakash Varambhia for his assistance and expertise with the experimental recording and use of characterization facilities within the David Cockayne Centre for Electron Microscopy, Department of Materials, University of Oxford, and in particular the EPSRC (EP/K040375/1 South of England Analytical Electron Microscope).; esteem3reported; esteem3JRA Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:191398 Serial 7114
Permanent link to this record
 

 
Author Yusupov, M.; Dewaele, D.; Attri, P.; Khalilov, U.; Sobott, F.; Bogaerts, A.
Title Molecular understanding of the possible mechanisms of oligosaccharide oxidation by cold plasma Type A1 Journal article
Year (down) 2022 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) is a promising technology for several medical applications, including the removal of biofilms from surfaces. However, the molecular mechanisms of CAP treatment are still poorly understood. Here we unravel the possible mechanisms of CAP‐induced oxidation of oligosaccharides, employing reactive molecular dynamics simulations based on the density functional‐tight binding potential. Specifically, we find that the interaction of oxygen atoms (used as CAP‐generated reactive species) with cellotriose (a model system for the oligosaccharides) can break structurally important glycosidic bonds, which subsequently leads to the disruption of the oligosaccharide molecule. The overall results help to shed light on our experimental evidence for cellotriose CAP. This oxidation by study provides atomic‐level insight into the onset of plasma‐induced removal of biofilms, as oligosaccharides are one of the main components of biofilm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000865844800001 Publication Date 2022-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 1200219N ; They also acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA, where all computational work was performed. This study was financially supported by the Research Foundation–Flanders (FWO) (grant number 1200219N). Approved Most recent IF: 3.5
Call Number PLASMANT @ plasmant @c:irua:191404 Serial 7113
Permanent link to this record
 

 
Author Pandey, T.; Du, M.-H.; Parker, D.S.; Lindsay, L.
Title Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites Type A1 Journal article
Year (down) 2022 Publication Materials Today Physics Abbreviated Journal
Volume 28 Issue Pages 100881-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract All-inorganic lead-free halide double perovskites offer a promising avenue toward non-toxic, stable optoelec-tronic materials, properties that are missing in their prominent lead-containing counterparts. Their large ther-mopowers and high carrier mobilities also make them promising for thermoelectric applications. Here, we present a first-principles study of the lattice vibrations and thermal transport behaviors of Cs2SnI6 and gamma-CsSnI3, two prototypical compounds in this materials class. We show that conventional static zero temperature density functional theory (DFT) calculations severely underestimate the lattice thermal conductivities (kappa l) of these compounds, indicating the importance of dynamical effects. By calculating anharmonic renormalized phonon dispersions, we show that some optic phonons significantly harden with increasing temperature (T), which reduces the scattering of heat carrying phonons and enhances calculated kappa l values when compared with standard zero temperature DFT. Furthermore, we demonstrate that coherence contributions to kappa l, arising from wave like phonon tunneling, are important in both compounds. Overall, calculated kappa l with temperature-dependent inter-atomic force constants, built from particle and coherence contributions, are in good agreement with available measured data, for both magnitude and temperature dependence. Large anharmonicity combined with low phonon group velocities yield ultralow kappa l values, with room temperature values of 0.26 W/m-K and 0.72 W/m-K predicted for Cs2SnI6 and gamma-CsSnI3, respectively. We further show that the lattice dynamics of these compounds are highly anharmonic, largely mediated by rotation of the SnI6 octahedra and localized modes originating from Cs rattling motion. These thermal characteristics combined with their previously computed excellent electronic properties make these perovskites promising candidates for optoelectronic and room temperature thermoelectric applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000876484300002 Publication Date 2022-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.5 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 11.5
Call Number UA @ admin @ c:irua:192139 Serial 7329
Permanent link to this record
 

 
Author Samal, S.K.; Soenen, S.; Puppi, D.; De Wael, K.; Pati, S.; De Smedt, S.; Braeckmans, K.; Dubruel, P.
Title Bio-nanohybrid gelatin/quantum dots for cellular imaging and biosensing applications Type A1 Journal article
Year (down) 2022 Publication International journal of molecular sciences Abbreviated Journal
Volume 23 Issue 19 Pages 11867-12
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The bio-nanohybrid gelatin protein/cadmium sulfide (Gel/CdS) quantum dots (QDs) have been designed via a facile one-pot strategy. The amino acids group of gelatin chelate Cd2+ and grow CdS QDs without any agglomeration. The H-1 NMR spectra indicate that during the above process there are no alterations of the gelatin protein structure conformation and chemical functionalities. The prepared Gel/CdS QDs were characterized and their potential as a system for cellular imaging and the electrochemical sensor for hydrogen peroxide (H2O2) detection applications were investigated. The obtained results demonstrate that the developed Gel/CdS QDs system could offer a simple and convenient operating strategy both for the class of contrast agents for cell labeling and electrochemical sensors purposes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000867759600001 Publication Date 2022-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067; 1661-6596 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:191566 Serial 8836
Permanent link to this record
 

 
Author Van Turnhout, J.; Aceto, D.; Travert, A.; Bazin, P.; Thibault-Starzyk, F.; Bogaerts, A.; Azzolina-Jury, F.
Title Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell Type A1 Journal article
Year (down) 2022 Publication Catalysis Science & Technology Abbreviated Journal Catal Sci Technol
Volume 12 Issue 22 Pages 6676-6686
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We developed a novel in situ (i.e. inside plasma and during operation) IR dielectric barrier discharge cell allowing investigation of plasma catalysis in transmission mode, atmospheric pressure, flow conditions (WHSV similar to 0-50 000 mL g(-1) h(-1)), at relevant discharge voltages (similar to 0-50 kV) and frequencies (similar to 0-5 kHz). We applied it to study the IR-active surface species formed on a SiO2 support and on a 3 wt% Ru/SiO2 catalyst, which can help to reveal the important surface reaction mechanisms during the plasma-catalytic dry reforming of methane (DRM). Moreover, we present a technique for the challenging task of estimating the temperature of a catalyst sample in a plasma-catalytic system in situ and during plasma operation. We found that during the reaction, water is immediately formed at the SiO2 surface, and physisorbed formic acid is formed with a delay. As Ru/SiO2 is subject to greater plasma-induced heating than SiO2 (with a surface temperature increase in the range of 70-120 degrees C, with peaks up to 150 degrees C), we observe lower amounts of physisorbed water on Ru/SiO2, and less physisorbed formic acid formation. Importantly, the formation of surface species on the catalyst sample in our plasma-catalytic setup, as well as the observed conversions and selectivities in plasma conditions, can not be explained by plasma-induced heating of the catalyst surface, but must be attributed to other plasma effects, such as the adsorption of plasma-generated radicals and molecules, or the occurrence of Eley-Rideal reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000865542600001 Publication Date 2022-10-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5
Call Number UA @ admin @ c:irua:191389 Serial 7185
Permanent link to this record
 

 
Author Faust, V.; van Alen, T.A.; Op den Camp, H.J.M.; Vlaeminck, S.E.; Ganigué, R.; Boon, N.; Udert, K.M.
Title Ammonia oxidation by novel “Candidatus Nitrosacidococcus urinae” is sensitive to process disturbances at low pH and to iron limitation at neutral pH Type A1 Journal article
Year (down) 2022 Publication Water Research X Abbreviated Journal
Volume 17 Issue Pages 100157-11
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Acid-tolerant ammonia-oxidizing bacteria (AOB) can open the door to new applications, such as partial nitritation at low pH. However, they can also be problematic because chemical nitrite oxidation occurs at low pH, leading to the release of harmful nitrogen oxide gases. In this publication, the role of acid-tolerant AOB in urine treatment was explored. On the one hand, the technical feasibility of ammonia oxidation under acidic conditions for source-separated urine with total nitrogen concentrations up to 3.5 g-N L−1 was investigated. On the other hand, the abundance and growth of acid-tolerant AOB at more neutral pH was explored. Under acidic conditions (pH of 5), ammonia oxidation rates of 500 mg-N L−1 d−1 and 10 g-N g-VSS-1 d-1 were observed, despite high concentrations of 15 mg-N L−1 of the AOB-inhibiting compound nitrous acid and low concentration of 0.04 mg-N L−1 of the substrate ammonia. However, ammonia oxidation under acidic conditions was very sensitive to process disturbances. Even short periods of less than 12 h without oxygen or without influent resulted in a complete cessation of ammonia oxidation with a recovery time of up to two months, which is a problem for low maintenance applications such as decentralized treatment. Furthermore, undesirable nitrogen losses of about 10% were observed. Under acidic conditions, a novel AOB strain was enriched with a relative abundance of up to 80%, for which the name “Candidatus (Ca.) Nitrosacidococcus urinae” is proposed. While Nitrosacidococcus members were present only to a small extent (0.004%) in urine nitrification reactors operated at pH values between 5.8 and 7, acid-tolerant AOB were always enriched during long periods without influent, resulting in an uncontrolled drop in pH to as low as 2.5. Long-term experiments at different pH values showed that the activity of “Ca. Nitrosacidococcus urinae” decreased strongly at a pH of 7, where they were also outcompeted by the acid-sensitive AOB Nitrosomonas halophila. The experiment results showed that the decreased activity of “Ca. Nitrosacidococcus urinae” correlated with the limited availability of dissolved iron at neutral pH.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000877925500001 Publication Date 2022-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2589-9147 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:190944 Serial 7124
Permanent link to this record
 

 
Author Bellizotti Souza, J.C.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A.
Title Clogging, diode and collective effects of skyrmions in funnel geometries Type A1 Journal article
Year (down) 2022 Publication New journal of physics Abbreviated Journal New J Phys
Volume 24 Issue 10 Pages 103030-14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a particle-based model, we examine the collective dynamics of skyrmions interacting with a funnel potential under dc driving as the skyrmion density and relative strength of the Magnus and damping terms are varied. For driving in the easy direction, we find that increasing the skyrmion density reduces the average skyrmion velocity due to jamming of skyrmions near the funnel opening, while the Magnus force causes skyrmions to accumulate on one side of the funnel array. For driving in the hard direction, there is a critical skyrmion density below which the skyrmions become trapped. Above this critical value, a clogging effect appears with multiple depinning and repinning states where the skyrmions can rearrange into different clogged configurations, while at higher drives, the velocity-force curves become continuous. When skyrmions pile up near the funnel opening, the effective size of the opening is reduced and the passage of other skyrmions is blocked by the repulsive skyrmion-skyrmion interactions. We observe a strong diode effect in which the critical depinning force is higher and the velocity response is smaller for hard direction driving. As the ratio of Magnus force to dissipative term is varied, the skyrmion velocity varies in a non-linear and non-monotonic way due to the pile up of skyrmions on one side of the funnels. At high Magnus forces, the clogging effect for hard direction driving is diminished.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000873333400001 Publication Date 2022-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:192178 Serial 7287
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
Year (down) 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 5776-5777
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000862552600012 Publication Date 2022-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 3 Open Access OpenAccess
Notes Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:191575 Serial 7228
Permanent link to this record
 

 
Author Larraín, M.; Billen, P.; Van Passel, S.
Title The effect of plastic packaging recycling policy interventions as a complement to extended producer responsibility schemes : a partial equilibrium model Type A1 Journal article
Year (down) 2022 Publication Waste Management Abbreviated Journal Waste Manage
Volume 153 Issue Pages 355-366
Keywords A1 Journal article; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Extended producer responsibility (EPR) schemes have effectively increased the plastic waste that is separately collected. However, due to the structure of the recycling industry, EPR cannot increase recycling rates up to the target levels.Additional policy instruments to increase recycling rates such as recycled content targets, green dot fees bonus for recycled content, recycling targets and taxes on non-recycled plastic packaging have been discussed on a political level in the last years. However, very little research has quantitatively studied the effectiveness of these policy interventions.Using a partial equilibrium model, this paper examines the effectiveness of the implementation of the aforementioned policy instruments to increase recycling rates and the impact on different stakeholders of the value chain: plastic producers, consumers, producer responsibility organization and recyclers.Results show that direct interventions (recycled content standards and recycling targets) have the benefit of decoupling the recycling industry from external markets such as the oil market. They can be a good starting point to increase recycling, but in the long term they may be restricting by not presenting incentives to achieve recycling levels beyond the targeted amounts and by limiting technological innovation. On the contrary, eco-nomic interventions such as a green dot fee bonus or a packaging tax create economic incentives for recycling. However, these incentives are diminished by the lower perceived quality of packaging with higher recycled content levels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000868915000004 Publication Date 2022-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.1 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 8.1
Call Number UA @ admin @ c:irua:191367 Serial 7370
Permanent link to this record
 

 
Author De Backer, A.; Zhang, Z.; van den Bos, K.H.W.; Bladt, E.; Sánchez‐Iglesias, A.; Liz‐Marzán, L.M.; Nellist, P.D.; Bals, S.; Van Aert, S.
Title Element Specific Atom Counting at the Atomic Scale by Combining High Angle Annular Dark Field Scanning Transmission Electron Microscopy and Energy Dispersive X‐ray Spectroscopy Type A1 Journal article
Year (down) 2022 Publication Small methods Abbreviated Journal Small Methods
Volume Issue Pages 2200875
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A new methodology is presented to count the number of atoms in multimetallic nanocrystals by combining energy dispersive X-ray spectroscopy (EDX) and high angle annular dark field scanning transmission electron microscopy (HAADF STEM). For this purpose, the existence of a linear relationship between the incoherent HAADF STEM and EDX images is exploited. Next to the number of atoms for each element in the atomic columns, the method also allows quantification of the error in the obtained number of atoms, which is of importance given the noisy nature of the acquired EDX signals. Using experimental images of an Au@Ag core–shell nanorod, it is demonstrated that 3D structural information can be extracted at the atomic scale. Furthermore, simulated data of an Au@Pt core–shell nanorod show the prospect to characterize heterogeneous nanostructures with adjacent atomic numbers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000862072700001 Publication Date 2022-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.4 Times cited 5 Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A., Grant 815128 REALNANO to S.B., and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N) and a postdoctoral grant to A.D.B.; esteem3reported; esteem3JRA Approved Most recent IF: 12.4
Call Number EMAT @ emat @c:irua:191570 Serial 7109
Permanent link to this record
 

 
Author Fabri, C.; Moretti, M.; Van Passel, S.
Title On the (ir)relevance of heatwaves in climate change impacts on European agriculture Type A1 Journal article
Year (down) 2022 Publication Climatic Change Abbreviated Journal Climatic Change
Volume 174 Issue 1-2 Pages 16-20
Keywords A1 Journal article; Engineering Management (ENM)
Abstract The Ricardian model is a widely used approach based on cross-sectional regression analysis to estimate climate change impacts on agricultural productivity. Up until now, researchers have focused on the impacts of gradual changes in temperature and precipitation, even though climate change is known to encompass also changes in the severity and frequency of extreme weather events. This research investigates the impact of heatwaves on European agriculture, additional to the impact of average climate change. Using a dataset of more than 60,000 European farms, the study examines whether adding a measure for heatwaves to the Ricardian model influences its results. We find that heatwaves have a minor impact on agricultural productivity and that this impact is moderated by average temperature. In colder regions, farm productivity increases with the number of heatwave days. For warmer regions, land values decrease with heatwave frequency. Despite the moderating effect, the marginal effect of heatwave frequency, i.e. the percentage change in agricultural land values caused by one more heatwave day per year, is small in comparison to the effect of average temperature increases. Non-marginal effects are found to be relevant, but only in the case of increased heatwave frequency. According to our results, farms are not expected to suffer more from extreme weather than from mean climate change, as was claimed by several previous studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861873100002 Publication Date 2022-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009; 1573-1480 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.8
Call Number UA @ admin @ c:irua:191483 Serial 7364
Permanent link to this record
 

 
Author Shaw, P.; Vanraes, P.; Kumar, N.; Bogaerts, A.
Title Possible Synergies of Nanomaterial-Assisted Tissue Regeneration in Plasma Medicine: Mechanisms and Safety Concerns Type A1 Journal article
Year (down) 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 12 Issue 19 Pages 3397
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma and nanomedicine originally emerged as individual domains, but are increasingly applied in combination with each other. Most research is performed in the context of cancer treatment, with only little focus yet on the possible synergies. Many questions remain on the potential of this promising hybrid technology, particularly regarding regenerative medicine and tissue engineering. In this perspective article, we therefore start from the fundamental mechanisms in the individual technologies, in order to envision possible synergies for wound healing and tissue recovery, as well as research strategies to discover and optimize them. Among these strategies, we demonstrate how cold plasmas and nanomaterials can enhance each other’s strengths and overcome each other’s limitations. The parallels with cancer research, biotechnology and plasma surface modification further serve as inspiration for the envisioned synergies in tissue regeneration. The discovery and optimization of synergies may also be realized based on a profound understanding of the underlying redox- and field-related biological processes. Finally, we emphasize the toxicity concerns in plasma and nanomedicine, which may be partly remediated by their combination, but also partly amplified. A widespread use of standardized protocols and materials is therefore strongly recommended, to ensure both a fast and safe clinical implementation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000866927800001 Publication Date 2022-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.3 Times cited Open Access OpenAccess
Notes This research was funded by the Methusalem Grant of UAntwerp, and the Department of Biotechnology (DBT) Ramalingaswami Re-entry Fellowship (BT/RLF/Re-entry/27/2019), as well as the Science and Engineering Research Board (SERB), Core Research Grant (CRG/2021/001935), Department of Science and Technology, India. Approved Most recent IF: 5.3
Call Number PLASMANT @ plasmant @c:irua:191493 Serial 7108
Permanent link to this record
 

 
Author Fitawok, M.B.; Derudder, B.; Minale, A.S.; Van Passel, S.; Adgo, E.; Nyssen, J.
Title Analyzing the impact of land expropriation program on farmers' livelihood in urban fringes of Bahir Dar, Ethiopia Type A1 Journal article
Year (down) 2022 Publication Habitat International Abbreviated Journal Habitat Int
Volume 129 Issue Pages 102674-102679
Keywords A1 Journal article; Sociology; Law; Art; Engineering Management (ENM)
Abstract This paper analyzes the impact of urban land-use changes on farmers' livelihood around the city of Bahir Dar (Ethiopia). Rapid urban expansion in and around the city has resulted in massive land-use changes in its urban fringes, with land expropriation programs affecting communities' livelihood and the environment. A survey was conducted in three urbanizing villages near Bahir Dar, focusing on 150 farmers who were land-expropriated and 180 farmers who were non-land-expropriated. Regression models and propensity matching scoring are applied to examine the livelihood differences of farmers in terms of farm income, off-farm income, primary expenditure type, and perception of urban expansion benefits to farmers. The results reveal that land expropriation in the area has led to (a) a shift to off-farm income for land expropriated farmers; (b) an increase in their household expenditure on staple foods compared to other expenditure types, including farm inputs; and (c) diverging perceptions on whether and how city expansion benefits farmers in the neighboring villages. Our findings provide insight into the need for tighter and impactful policy actions to ensure the sustainability of urbanization through accommodating expropriated farmers' livelihood changes and protecting natural resources in the area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000866411200001 Publication Date 2022-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0197-3975; 0361-3690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.285 Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:191385 Serial 7352
Permanent link to this record
 

 
Author Jiang, J.; Milošević, M.V.; Wang, Y.-L.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H.
Title Field-free superconducting diode in a magnetically nanostructured superconductor Type A1 Journal article
Year (down) 2022 Publication Physical review applied Abbreviated Journal Phys Rev Appl
Volume 18 Issue 3 Pages 034064-34069
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A strong superconducting diode effect (SDE) is revealed in a thin superconducting film periodically nanostructured with magnetic dots. The SDE is caused by the current-activated dissipation mitigated by vortex-antivortex pairs (VAPs), which periodically nucleate under the dots, move and annihilate in the superconductor-eventually driving the system to the high-resistive state. Inversing the polarity of the applied current destimulates the nucleation of VAPs, the system remains superconducting up to far larger currents, leading to the pronounced diodic response. Our dissipative Ginzburg-Landau simulations detail the involved processes, and provide reliable geometric and parametric ranges for the experimental realiza-tion of such a nonvolatile superconducting diode, which operates in the absence of any applied magnetic field while being fluxonic by design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000870234200001 Publication Date 2022-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:191539 Serial 7307
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Fischetti, M.V.; Sorée, B.; Vandenberghe, W.G.
Title Image-force barrier lowering in top- and side-contacted two-dimensional materials Type A1 Journal article
Year (down) 2022 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 198 Issue Pages 108458-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We compare the image-force barrier lowering (IFBL) and calculate the resulting contact resistance for four different metal-dielectric-two-dimensional (2D) material configurations. We analyze edge contacts in three different geometries (a homogeneous dielectric throughout, including the 2D layer; a homogeneous dielectric surrounding the 2D layer, both ungated and back gated) and also a top-contact assuming a homogeneous dielectric. The image potential energy of each configuration is determined and added to the Schottky energy barrier which is calculated assuming a textbook Schottky potential. For each configuration, the contact resistivity is calculated using the WKB approximation and the effective mass approximation using either SiO2 or HfO2 as the surrounding dielectric. We obtain the lowest contact resistance of 1 k Omega mu m by n-type doping an edge contacted transition metal-dichalcogenide (TMD) monolayer, sandwiched between SiO2 dielectric, with similar to 1012 cm-2 donor atoms. When this optimal configuration is used, the contact resistance is lowered by a factor of 50 compared to the situation when the IFBL is not considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000876289800003 Publication Date 2022-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.7
Call Number UA @ admin @ c:irua:191556 Serial 7312
Permanent link to this record
 

 
Author Zhang, H.; Pryds, N.; Park, D.-S.; Gauquelin, N.; Santucci, S.; Christensen, D., V.; Jannis, D.; Chezganov, D.; Rata, D.A.; Insinga, A.R.; Castelli, I.E.; Verbeeck, J.; Lubomirsky, I.; Muralt, P.; Damjanovic, D.; Esposito, V.
Title Atomically engineered interfaces yield extraordinary electrostriction Type A1 Journal article
Year (down) 2022 Publication Nature Abbreviated Journal
Volume 609 Issue 7928 Pages 695-700
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electrostriction is a property of dielectric materials whereby an applied electric field induces a mechanical deformation proportional to the square of that field. The magnitude of the effect is usually minuscule (<10(-19) m(2) V-2 for simple oxides). However, symmetry-breaking phenomena at the interfaces can offer an efficient strategy for the design of new properties(1,2). Here we report an engineered electrostrictive effect via the epitaxial deposition of alternating layers of Gd2O3-doped CeO2 and Er2O3-stabilized delta-Bi2O3 with atomically controlled interfaces on NdGaO3 substrates. The value of the electrostriction coefficient achieved is 2.38 x 10(-14) m(2) V-2, exceeding the best known relaxor ferroelectrics by three orders of magnitude. Our theoretical calculations indicate that this greatly enhanced electrostriction arises from coherent strain imparted by interfacial lattice discontinuity. These artificial heterostructures open a new avenue for the design and manipulation of electrostrictive materials and devices for nano/micro actuation and cutting-edge sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000859073900001 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access OpenAccess
Notes This research was supported by the BioWings project, funded by the European Union’s Horizon 2020, Future and Emerging Technologies programme (grant no. 801267), and by the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 2 (grant no. 48293). N.P. and D.V.C. acknowledge funding from Villum Fonden for the NEED project (no. 00027993) and from the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 3 (grant no. 00069 B). V.E. acknowledges funding from Villum Fonden for the IRIDE project (no. 00022862). N.G. and J.V. acknowledge funding from the GOA project ('Solarpaint') of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from the FWO Project (no. G093417N) from the Flemish Fund for Scientific Research. D.C. acknowledges TOP/BOF funding from the University of Antwerp. This project has received funding from the European Union’s Horizon 2020 Research Infrastructure—Integrating Activities for Advanced Communities—under grant agreement no. 823717-ESTEEM3. We thank T. D. Pomar and A. J. Bergne for English proofreading.; esteem3reported; esteem3TA Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:190576 Serial 7129
Permanent link to this record
 

 
Author Vega Ibañez, F.; Béché, A.; Verbeeck, J.
Title Can a programmable phase plate serve as an aberration corrector in the transmission electron microscope (TEM)? Type A1 Journal article
Year (down) 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages Pii S1431927622012260-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Current progress in programmable electrostatic phase plates raises questions about their usefulness for specific applications. Here, we explore different designs for such phase plates with the specific goal of correcting spherical aberration in the transmission electron microscope (TEM). We numerically investigate whether a phase plate could provide down to 1 angstrom ngstrom spatial resolution on a conventional uncorrected TEM. Different design aspects (fill factor, pixel pattern, symmetry) were evaluated to understand their effect on the electron probe size and current density. Some proposed designs show a probe size () down to 0.66 angstrom, proving that it should be possible to correct spherical aberration well past the 1 angstrom limit using a programmable phase plate consisting of an array of electrostatic phase-shifting elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000849975400001 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 3 Open Access OpenAccess
Notes All authors acknowledge funding from the Flemish Research Fund under contract G042820N “Exploring adaptive optics in transmission electron microscopy”. J.V. acknowledges funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3 and from the University of Antwerp through a TOP BOF project.; esteem3reported; esteem3jra Approved Most recent IF: 2.8
Call Number UA @ admin @ c:irua:190627 Serial 7134
Permanent link to this record
 

 
Author Guo, A.; Bai, H.; Liang, Q.; Feng, L.; Su, X.; Van Tendeloo, G.; Wu, J.
Title Resistive switching in Ag₂Te semiconductor modulated by Ag+-ion diffusion and phase transition Type A1 Journal article
Year (down) 2022 Publication Advanced Electronic Materials Abbreviated Journal Adv Electron Mater
Volume Issue Pages 2200850-2200858
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Memristors are considered to be the fourth circuit element and have great potential in areas like logic operations, information storage, and neuromorphic computing. The functional material in a memristor, which has a nonlinear resistance, is the key component to be developed. Herein, resistive switching is demonstrated and the structural evolutions in Ag2Te are examined under an external electric field. It is shown that the electroresistance effect is originating from an electronically triggered phase transition together with directional Ag+-ion diffusion. Using in situ transmission electron microscopy, the phase transition from the monoclinic alpha-Ag2Te into the face-centered cubic beta-Ag2Te, accompanied by a change in resistance, is directly observed. Diffusion of Ag+-ions modulates the localized density of Ag+-ion vacancies, leading to a change in electrical conductivity and influences the threshold voltage to trigger the phase transition. During the electric field-driven phase transition, the spontaneous and localized multiple polarizations from the low-symmetry alpha-Ag2Te (referring to an antiferroelectric structure) are vanishing in the cubic beta-Ag2Te (referring to a paraelectric structure). The abrupt resistance change of thin Ag2Te caused by the phase transition and modulated by the applied electric field demonstrates its great potential as functional material in volatile memory and memristors with a low-energy consumption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000855728500001 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.2
Call Number UA @ admin @ c:irua:190582 Serial 7203
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Bals, S.; Verbruggen, S.W.
Title Plasmon resonance of gold and silver nanoparticle arrays in the Kretschmann (attenuated total reflectance) vs. direct incidence configuration Type A1 Journal article
Year (down) 2022 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 12 Issue 1 Pages 15738-19
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract While the behaviour of plasmonic solid thin films in the Kretschmann (also known as Attenuated Total Reflection, ATR) configuration is well-understood, the use of discrete nanoparticle arrays in this optical configuration is not thoroughly explored. It is important to do so, since close packed plasmonic nanoparticle arrays exhibit exceptionally strong light-matter interactions by plasmonic coupling. The present work elucidates the optical properties of plasmonic Au and Ag nanoparticle arrays in both the direct normal incidence and Kretschmann configuration by numerical models, that are validated experimentally. First, hexagonal close packed Au and Ag nanoparticle films/arrays are obtained by air–liquid interfacial assembly. The numerical models for the rigorous solution of the Maxwell’s equations are validated using experimental optical spectra of these films before systematically investigating various parameters. The individual far-field/near-field optical properties, as well as the plasmon relaxation mechanism of the nanoparticles, vary strongly as the packing density of the array increases. In the Kretschmann configuration, the evanescent fields arising from p – and s -polarized (or TM and TE polarized) incidence have different directional components. The local evanescent field intensity and direction depends on the polarization, angle of incidence and the wavelength of incidence. These factors in the Kretschmann configuration give rise to interesting far-field as well as near-field optical properties. Overall, it is shown that plasmonic nanoparticle arrays in the Kretschmann configuration facilitate strong broadband absorptance without transmission losses, and strong near-field enhancement. The results reported herein elucidate the optical properties of self-assembled nanoparticle films, pinpointing the ideal conditions under which the normal and the Kretschmann configuration can be exploited in multiple light-driven applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000858344700048 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 11 Open Access OpenAccess
Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship (Grant FN541100001). Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:190864 Serial 7194
Permanent link to this record
 

 
Author Zeegers, M.T.; Kadu, A.; van Leeuwen, T.; Batenburg, K.J.
Title ADJUST : a dictionary-based joint reconstruction and unmixing method for spectral tomography Type A1 Journal article
Year (down) 2022 Publication Inverse problems Abbreviated Journal Inverse Probl
Volume 38 Issue 12 Pages 125002-125033
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Advances in multi-spectral detectors are causing a paradigm shift in x-ray computed tomography (CT). Spectral information acquired from these detectors can be used to extract volumetric material composition maps of the object of interest. If the materials and their spectral responses are known a priori, the image reconstruction step is rather straightforward. If they are not known, however, the maps as well as the responses need to be estimated jointly. A conventional workflow in spectral CT involves performing volume reconstruction followed by material decomposition, or vice versa. However, these methods inherently suffer from the ill-posedness of the joint reconstruction problem. To resolve this issue, we propose 'A Dictionary-based Joint reconstruction and Unmixing method for Spectral Tomography' (ADJUST). Our formulation relies on forming a dictionary of spectral signatures of materials common in CT and prior knowledge of the number of materials present in an object. In particular, we decompose the spectral volume linearly in terms of spatial material maps, a spectral dictionary, and the indicator of materials for the dictionary elements. We propose a memory-efficient accelerated alternating proximal gradient method to find an approximate solution to the resulting bi-convex problem. From numerical demonstrations on several synthetic phantoms, we observe that ADJUST performs exceedingly well compared to other state-of-the-art methods. Additionally, we address the robustness of ADJUST against limited and noisy measurement patterns. The demonstration of the proposed approach on a spectral micro-CT dataset shows its potential for real-world applications. Code is available at https://github.com/mzeegers/ADJUST.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000868885200001 Publication Date 2022-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0266-5611 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.1 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.1
Call Number UA @ admin @ c:irua:191536 Serial 7280
Permanent link to this record
 

 
Author Reichhardt, C.; Reichhardt, C.J.O.; Milošević, M.V.
Title Statics and dynamics of skyrmions interacting with disorder and nanostructures Type A1 Journal article
Year (down) 2022 Publication Reviews of modern physics Abbreviated Journal Rev Mod Phys
Volume 94 Issue 3 Pages 035005-35061
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetic skyrmions are topologically stable nanoscale particlelike objects that were discovered in 2009. Since that time, intense research interest in the field has led to the identification of numerous compounds that support skyrmions over a range of conditions spanning from cryogenic to room temperatures. Skyrmions can be set into motion under various types of driving, and the combination of their size, stability, and dynamics makes them ideal candidates for numerous applications. At the same time, skyrmions represent a new class of system in which the energy scales of the skyrmion-skyrmion interactions, sample disorder, temperature, and drive can compete. A growing body of work indicates that the static and dynamic states of skyrmions can be influenced strongly by pinning or disorder in the sample; thus, an understanding of such effects is essential for the eventual use of skyrmions in applications. The current state of knowledge regarding individual skyrmions and skyrmion assemblies interacting with quenched disorder or pinning is reviewed. The microscopic mechanisms for skyrmion pinning, including the repulsive and attractive interactions that can arise from impurities, grain boundaries, or nanostructures, are outlined. This is followed by descriptions of depinning phenomena, sliding states over disorder, the effect of pinning on the skyrmion Hall angle, the competition between thermal and pinning effects, the control of skyrmion motion using ordered potential landscapes such as one-or two-dimensional periodic asymmetric substrates, the creation of skyrmion diodes, and skyrmion ratchet effects. Highlighted are the distinctions arising from internal modes and the strong gyrotropic or Magnus forces that cause the dynamical states of skyrmions to differ from those of other systems with pinning, such as vortices in type-II superconductors, charge density waves, or colloidal particles. Throughout this review future directions and open questions related to the and in are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861559900001 Publication Date 2022-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-6861; 1539-0756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 44.1 Times cited 12 Open Access OpenAccess
Notes Approved Most recent IF: 44.1
Call Number UA @ admin @ c:irua:191507 Serial 7339
Permanent link to this record
 

 
Author Le, T.-S.; Nguyen, P.-D.; Ngo, H.H.; Bui, X.-T.; Dang, B.-T.; Diels, L.; Bui, H.-H.; Nguyen, M.-T.; Le Quang, D.-T.
Title Two-stage anaerobic membrane bioreactor for co-treatment of food waste and kitchen wastewater for biogas production and nutrients recovery Type A1 Journal article
Year (down) 2022 Publication Chemosphere Abbreviated Journal Chemosphere
Volume 309 Issue 1 Pages 136537-136539
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Co-digestion of organic waste and wastewater is receiving increased attention as a plausible waste management approach toward energy recovery. However, traditional anaerobic processes for co-digestion are particularly susceptible to severe organic loading rates (OLRs) under long-term treatment. To enhance technological feasi-bility, this work presented a two-stage Anaerobic Membrane Bioreactor (2 S-AnMBR) composed of a hydrolysis reactor (HR) followed by an anaerobic membrane bioreactor (AnMBR) for long-term co-digestion of food waste and kitchen wastewater. The OLRs were expanded from 4.5, 5.6, and 6.9 kg COD m- 3 d-1 to optimize biogas yield, nitrogen recovery, and membrane fouling at ambient temperatures of 25-32 degrees C. Results showed that specific methane production of UASB was 249 +/- 7 L CH4 kg-1 CODremoved at the OLR of 6.9 kg TCOD m- 3 d-1. Total Chemical Oxygen Demand (TCOD) loss by hydrolysis was 21.6% of the input TCOD load at the hydraulic retention time (HRT) of 2 days. However, low total volatile fatty acid concentrations were found in the AnMBR, indicating that a sufficiently high hydrolysis efficiency could be accomplished with a short HRT. Furthermore, using AnMBR structure consisting of an Upflow Anaerobic Sludge Blanket Reactor (UASB) followed by a side -stream ultrafiltration membrane alleviated cake membrane fouling. The wasted digestate from the AnMBR comprised 42-47% Total Kjeldahl Nitrogen (TKN) and 57-68% total phosphorous loading, making it suitable for use in soil amendments or fertilizers. Finally, the predominance of fine particles (D10 = 0.8 mu m) in the ultra -filtration membrane housing (UFMH) could lead to a faster increase in trans-membrane pressure during the filtration process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000866470600004 Publication Date 2022-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.8 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 8.8
Call Number UA @ admin @ c:irua:191557 Serial 7347
Permanent link to this record
 

 
Author Lazarevic, N.; Baum, A.; Milosavljevic, A.; Peis, L.; Stumberger, R.; Bekaert, J.; Solajic, A.; Pesic, J.; Wang, A.; Scepanovic, M.; Abeykoon, A.M.M.; Milošević, M.V.; Petrovic, C.; Popovic, Z.V.; Hackl, R.
Title Evolution of lattice, spin, and charge properties across the phase diagram of Fe1-xSx Type A1 Journal article
Year (down) 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 9 Pages 094510-94519
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A Raman scattering study covering the entire substitution range of the FeSe1-xSx solid solution is presented. Data were taken as a function of sulfur concentration x for 0 <= x <= 1, of temperature and of scattering symmetry. All types of excitations including phonons, spins, and charges are analyzed in detail. It is observed that the energy and width of the iron-related B-1g phonon mode vary continuously across the entire range of sulfur substitution. The A(1g) chalcogenide mode disappears above x = 0.23 and reappears at a much higher energy for x = 0.69. In a similar way the spectral features appearing at finite doping in A(1g) symmetry vary discontinuously. The magnetic excitation centered at approximately 500 cm(-1) disappears above x = 0.23 where the A(1g) lattice excitations exhibit a discontinuous change in energy. The low-energy mode associated with fluctuations displays maximal intensity at the nematostructural transition and thus tracks the phase boundary.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000917933500004 Publication Date 2022-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:194397 Serial 7304
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Yu, C.-P.; Sentürk, D.G.; Lobato, I.; Faes, C.; Van Aert, S.
Title Three Approaches for Representing the Statistical Uncertainty on Atom-Counting Results in Quantitative ADF STEM Type A1 Journal article
Year (down) 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A decade ago, a statistics-based method was introduced to count the number of atoms from annular dark-field scanning transmission electron microscopy (ADF STEM) images. In the past years, this method was successfully applied to nanocrystals of arbitrary shape, size, and composition (and its high accuracy and precision has been demonstrated). However, the counting results obtained from this statistical framework are so far presented without a visualization of the actual uncertainty about this estimate. In this paper, we present three approaches that can be used to represent counting results together with their statistical error, and discuss which approach is most suited for further use based on simulations and an experimental ADF STEM image.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000854930500001 Publication Date 2022-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.8 Times cited Open Access OpenAccess
Notes This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N, G.0267.18N, and EOS 30489208. S.V.A. acknowledges TOP BOF funding from the University of Antwerp. The authors are grateful to L.M. Liz-Marzán (CIC biomaGUNE and Ikerbasque) for providing the samples. esteem3reported; esteem3jra Approved Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:190585 Serial 7119
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L.
Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
Year (down) 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 121 Issue 11 Pages 112405-112407
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000863219400003 Publication Date 2022-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4
Call Number UA @ admin @ c:irua:191541 Serial 7223
Permanent link to this record