|   | 
Details
   web
Records
Author Fatermans, J.; de Backer, A.; den Dekker, A.J.; Van Aert, S.
Title Atom column detection Type H2 Book chapter
Year (down) 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 177-214
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract By combining statistical parameter estimation and model-order selection using a Bayesian framework, the maximum a posteriori (MAP) probability rule is proposed in this chapter as an objective and quantitative method to detect atom columns from high-resolution scanning transmission electron microscopy (HRSTEM) images. The validity and usefulness of this approach is demonstrated to both simulated and experimental annular dark-field (ADF) STEM images, but also to simultaneously acquired annular bright-field (ABF) and ADF STEM image data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177531 Serial 6775
Permanent link to this record
 

 
Author Fatermans, J.; de Backer, A.; den Dekker, A.J.; Van Aert, S.
Title Image-quality evaluation and model selection with maximum a posteriori probability Type H2 Book chapter
Year (down) 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 215-242
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract The maximum a posteriori (MAP) probability rule for atom column detection can also be used as a tool to evaluate the relation between scanning transmission electron microscopy (STEM) image quality and atom detectability. In this chapter, a new image-quality measure is proposed that correlates well with atom detectability, namely the integrated contrast-to-noise ratio (ICNR). Furthermore, the working principle of the MAP probability rule is described in detail showing a close relation to the principles of model-selection methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177532 Serial 6782
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title Atom counting Type H2 Book chapter
Year (down) 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 91-144
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this chapter, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high-resolution annular dark-field (ADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. We show that this method can be applied to nanocrystals of arbitrary shape, size, and atom type. The validity of the atom-counting results is confirmed by means of detailed image simulations and it is shown that the high sensitivity of our method enables us to count atoms with single atom sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177529 Serial 6776
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title Efficient fitting algorithm Type H2 Book chapter
Year (down) 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 73-90
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)
Abstract An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic-resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighboring columns, enabling the analysis of a large field of view. To provide end-users with this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. In this chapter, this efficient algorithm is applied to three different nanostructures for which the analysis of a large field of view is required.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177528 Serial 6778
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title General conclusions and future perspectives Type H2 Book chapter
Year (down) 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 243-253
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract This chapter provides an overview of statistical and quantitative methodologies that have pushed (scanning) transmission electron microscopy ((S)TEM) toward accurate and precise measurements of unknown structure parameters for understanding the relation between the structure of a material and its properties. Hereby, statistical parameter estimation theory has extensively been used which enabled not only measuring atomic column positions, but also quantifying the number of atoms, and detecting atomic columns as accurately and precisely as possible from experimental images. As a general conclusion, it can be stated that advanced statistical techniques are ideal tools to perform quantitative electron microscopy at the atomic scale. In the future, statistical methods will continue to be developed and novel quantification procedures will open up new possibilities for studying material structures at the atomic scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177533 Serial 6781
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title Introduction Type H2 Book chapter
Year (down) 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 1-28
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177525 Serial 6784
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title Optimal experiment design for nanoparticle atom counting from ADF STEM images Type H2 Book chapter
Year (down) 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 145-175
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this chapter, the principles of detection theory are used to quantify the probability of error for atom counting from high-resolution scanning transmission electron microscopy (HRSTEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom counting using the expression of the probability of error. We show that for very thin objects the low-angle annular dark-field (LAADF) regime is optimal and that for thicker objects the optimal inner detector angle increases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177530 Serial 6785
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title Statistical parameter estimation theory : principles and simulation studies Type H2 Book chapter
Year (down) 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 29-72
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this chapter, the principles of statistical parameter estimation theory for a quantitative analysis of atomic-resolution electron microscopy images are introduced. Within this framework, electron microscopy images are described by a parametric statistical model. Here, parametric models are introduced for different types of electron microscopy images: reconstructed exit waves, annular dark-field (ADF) scanning transmission electron microscopy (STEM) images, and simultaneously acquired ADF and annular bright-field (ABF) STEM images. Furthermore, the Cramér-Rao lower bound (CRLB) is introduced, i.e. a theoretical lower bound on the variance of any unbiased estimator. This CRLB is used to quantify the precision of the structure parameters of interest, such as the atomic column positions and the integrated atomic column intensities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177527 Serial 6788
Permanent link to this record
 

 
Author Lubk, A.; Vogel, K.; Wolf, D.; Krehl, J.; Röder, F.; Clark, L.; Guzzinati, G.; Verbeeck, J.
Title Fundamentals of Focal Series Inline Electron Holography Type H1 Book chapter
Year (down) 2016 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics / Hawkes, P.W. [edit.] Abbreviated Journal
Volume Issue Pages 105-147
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Elsevier BV Place of Publication Editor
Language Wos Publication Date 2016-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1076-5670; http://id.crossref.org/isbn/9780128048115 ISBN 9780128048115 Additional Links UA library record
Impact Factor Times cited Open Access
Notes L.C., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant no. 278510 VORTEX. A.L., K.V., J. K., D.W., and F.R. acknowledge funding from the DIP of the Deutsche Forschungsgesellschaft.; ECASJO_; Approved Most recent IF: NA
Call Number EMAT @ emat @ c:irua:140097UA @ admin @ c:irua:140097 Serial 4419
Permanent link to this record