|   | 
Details
   web
Records
Author Bagiński, M.; Pedrazo-Tardajos, A.; Altantzis, T.; Tupikowska, M.; Vetter, A.; Tomczyk, E.; Suryadharma, R.N.S.; Pawlak, M.; Andruszkiewicz, A.; Górecka, E.; Pociecha, D.; Rockstuhl, C.; Bals, S.; Lewandowski, W.
Title Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices Type A1 Journal article
Year (down) 2021 Publication Acs Nano Abbreviated Journal Acs Nano
Volume Issue Pages acsnano.0c09746
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV−vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV−vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000634569100101 Publication Date 2021-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 10 Open Access OpenAccess
Notes Ministerstwo Nauki i Szkolnictwa Wyzszego, 0112/DIA/2019/48 ; European Commission, 731019 E171000009 (EUSMI) ; Narodowe Centrum Nauki, 2016/21/N/ST5/03356 ; Deutsche Forschungsgemeinschaft, RO 3640/12-1 ; Fundacja na rzecz Nauki Polskiej, First TEAM2016–2/15 ; European Research Council, 815128 (REALNANO) ; sygma; Approved Most recent IF: 13.942
Call Number EMAT @ emat @c:irua:175872 Serial 6673
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R.S.; Bogaerts, A.; Lefferts, L.
Title Plasma-driven catalysis: green ammonia synthesis with intermittent electricity Type A1 Journal article
Year (down) 2020 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 22 Issue 19 Pages 6258-6287
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract Ammonia is one of the most produced chemicals, mainly synthesized from fossil fuels for fertilizer applications. Furthermore, ammonia may be one of the energy carriers of the future, when it is produced from renewable electricity. This has spurred research on alternative technologies for green ammonia production. Research on plasma-driven ammonia synthesis has recently gained traction in academic literature. In the current review, we summarize the literature on plasma-driven ammonia synthesis. We distinguish between mechanisms for ammonia synthesis in the presence of a plasma, with and without a catalyst, for different plasma conditions. Strategies for catalyst design are discussed, as well as the current understanding regarding the potential plasma-catalyst synergies as function of the plasma conditions and their implications on energy efficiency. Finally, we discuss the limitations in currently reported models and experiments, as an outlook for research opportunities for further unravelling the complexities of plasma-catalytic ammonia synthesis, in order to bridge the gap between the currently reported models and experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000575015700002 Publication Date 2020-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited 4 Open Access
Notes ; ; Approved Most recent IF: 9.8; 2020 IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:172671 Serial 6430
Permanent link to this record
 

 
Author Ma, R.; He, Y.; Feng, J.; Hu, Z.-Y.; Van Tendeloo, G.; Li, D.
Title A facile synthesis of Ag@PdAg core-shell architecture for efficient purification of ethene feedstock Type A1 Journal article
Year (down) 2019 Publication Journal of catalysis Abbreviated Journal
Volume 369 Issue Pages 440-449
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Precise control of elemental configurations within multimetallic nanoparticles could enable access to functional nanomaterials with significant performance benefits. Here, we present a one-pot synthesis of supported Ag@PdAg core-shell catalyst with an ordered PdAg alloy shell and an Ag core. Both the relative reduction potential and ratio of metal precursors are essential for this synthesis strategy. The distinguished properties of Ag@PdAg, particularly the electronic structure, indicates the existence of electron modification not only between Pd and Ag on PdAg shell, but between Ag core and alloy shell. The Ag@PdAg catalyst displays 97% ethene yield in the partial hydrogenation of acetylene, which is 2.0 and 8.1 times that of over PdAg alloy and pure Pd catalysts, and this is the most selective catalyst reported to data under industrial evaluation conditions. Moreover, this core-shell structure exhibits preferable stability with comparison to PdAg alloy catalyst. The facile synthesis of core-shell architecture with alloy shell structure provides a new platform for efficient catalytic transfer of chemical resource. (C) 2018 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460711700045 Publication Date 2018-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:181261 Serial 6848
Permanent link to this record
 

 
Author Moretti, M.; De Boni, A.; Roma, R.; Fracchiolla, M.; Van Passel, S.
Title Integrated assessment of agro-ecological systems : the case study of the “Alta Murgia” National park in Italy Type A1 Journal article
Year (down) 2016 Publication Agricultural Systems Abbreviated Journal Agr Syst
Volume 144 Issue Pages 144-155
Keywords A1 Journal article; Engineering Management (ENM)
Abstract Several indicators and methods are already applied for sustainability assessment in agriculture. The links between sustainability indicators, agricultural management and policies are not well explained. The aim of this study is to combine biophysical and monetary sustainability assessment tools to support agriculture policy decision-making. Three methodological steps are considered: i) the environmental impacts of farms are assessed using terrestrial acidification, freshwater eutrophication, soil and freshwater ecotoxicity as well as natural land transformation; ii) the most relevant indicators of agriculture damages on ecosystems quality are aggregated into an index; iii) the farms' index scores are integrated with farm assets, land and labor, into the Sustainable Value approach (SVA), as indicator of natural resources used by farms. As a case study, the methodology was applied to arable farms with and without animal husbandry of the “Alta Murgia” National Park. The crop farms, in our sample, have a higher sustainable value using their economic and environmental resources. Mixed farms need to improve their resources use efficiency. Although crop farms have lower land-use efficiency compared to mixed farms, our results suggest supporting, by means of policy options, the specialized crop farms that, on average, perform better in terms of ecosystems quality preservation. Finally, we find that Life Cycle Assessment (LCA) to soundly measure the environmental impacts clearly enriches the SVA. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373553100014 Publication Date 2016-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 2.571 Times cited 6 Open Access
Notes ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. The authors want to thank the “Alta Murgia” Park Authority for the support in this study and all farmers that collaborated with the authors providing data. Moreover, the authors want to thank Dr. Sylvestre Njakou Djomo for the useful discussion and suggestion to build the LCA model. ; Approved Most recent IF: 2.571
Call Number UA @ admin @ c:irua:133254 Serial 6218
Permanent link to this record
 

 
Author Poelma, R.H.; Fan, X.; Hu, Z.-Y.; Van Tendeloo, G.; van Zeijl, H.W.; Zhang, G.Q.
Title Effects of Nanostructure and Coating on the Mechanics of Carbon Nanotube Arrays Type A1 Journal article
Year (down) 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 26 Pages 1233-1242
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoscale materials are one of the few engineering materials that can be grown from the bottom up in a controlled manner. Here, the effects of nanostructure and nanoscale conformal coating on the mechanical behavior of vertically aligned carbon nanotube (CNT) arrays through experiments and simulation are systematically investigated. A modeling approach is developed and used to quantify the compressive strength and modulus of the CNT array under large deformation. The model accounts for the porous

nanostructure, which contains multiple CNTs with random waviness, van der Waals interactions, fracture strain, contacts, and frictional forces. CNT array micropillars are grown and their porous nanostructure is controlled by the infi ltration and deposition of thin conformal coatings using chemical vapor deposition. Flat-punch nanoindentation experiments reveal signifi cant changes in material properties as a function of coating thickness. The simulations explain the experimental results and show the novel failure transition regime that changes from collective CNT buckling toward structural collapse due to fracture. The compressive strength and the elastic

modulus increase exponentially as a function of the coating thickness and demonstrate a unique dependency on the CNT waviness. More interestingly, a design rule is identifi ed that predicts the optimum coating thickness for porous materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371078100010 Publication Date 2016-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 17 Open Access
Notes The research leading to the TEM/HAADF-STEM results received funding from the EC Framework 7 Program ESTEEM2 (Reference 312483). We wish to acknowledge the support of the Else Kooi Laboratory for their assistance during the clean room processing.; esteem2_ta Approved Most recent IF: 12.124
Call Number c:irua:130060 c:irua:130060 Serial 3996
Permanent link to this record
 

 
Author Kato, T.; Neyts, E.C.; Abiko, Y.; Akama, T.; Hatakeyama, R.; Kaneko, T.
Title Kinetics of energy selective Cs encapsulation in single-walled carbon nanotubes for damage-free and position-selective doping Type A1 Journal article
Year (down) 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue 119 Pages 11903-11908
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A method has been developed for damage-free cesium (Cs) encapsulation within single-walled carbon nanotubes (SWNTs) with fine position selectivity. Precise energy tuning of Cs-ion irradiation revealed that there is a clear energy window (2060 eV) for the efficient encapsulation of Cs through the hexagonal network of SWNT sidewalls without causing significant damage. This minimum energy threshold of Cs-ion encapsulation (∼20 eV) matches well with the value obtained by ab initio simulation (∼22 eV). Furthermore, position-selective Cs encapsulation was carried out, resulting in the successful formation of pn-junction SWNT thin films with excellent environmental stability.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000355495600072 Publication Date 2015-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 3 Open Access
Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:125928 Serial 1760
Permanent link to this record