toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fitawok, M.B.; Derudder, B.; Minale, A.S.; Van Passel, S.; Adgo, E.; Nyssen, J. url  doi
openurl 
  Title Stakeholder perspectives on farmers' resistance towards urban land-use changes in Bahir Dar, Ethiopia Type A1 Journal article
  Year 2023 Publication Journal of Land Use Science Abbreviated Journal  
  Volume (down) 18 Issue 1 Pages 25-38  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Owing to growing uncontrolled land-use change and urban expansion, farmers in urban fringes are struggling to sustain their livelihood. Farmers have been expressing their dissatisfaction at different times. This study analyzes the stakeholders' perspectives on the causes and outcomes of farmers' resistance to land-use change and urban expansion processes by zooming in on Bahir Dar, Ethiopia. The paper is based on focus group discussions with farmers in the neighboring villages, local agricultural extension experts, and, subsequently, key informant interviews of local government officials. Juxtaposing farmers' and local experts' positions reveals that inadequate compensations during land expropriation, lack of good governance in the urban expansion process, and inaccessibility of infrastructures are primary reasons for the farmers' struggle against urban expansion in the urban fringes. This study provides insights into the consequences of unplanned urban development challenges and may inform research and policymaking on sustainable urban development in the area and beyond.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000936397600001 Publication Date 2023-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1747-423x; 1747-4248 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.2; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:195109 Serial 7368  
Permanent link to this record
 

 
Author Cheng, X.; Xu, W.; Wen, H.; Zhang, J.; Zhang, H.; Li, H.; Peeters, F.M.; Chen, Q. pdf  url
doi  openurl
  Title Electronic properties of 2H-stacking bilayer MoS₂ measured by terahertz time-domain spectroscopy Type A1 Journal article
  Year 2023 Publication Frontiers of physics Abbreviated Journal  
  Volume (down) 18 Issue 5 Pages 53303-53311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer (BL) molybdenum disulfide (MoS2) is one of the most important electronic structures not only in valleytronics but also in realizing twistronic systems on the basis of the topological mosaics in moire superlattices. In this work, BL MoS2 on sapphire substrate with 2H-stacking structure is fabricated. We apply the terahertz (THz) time-domain spectroscopy (TDS) for examining the basic optoelectronic properties of this kind of BL MoS2. The optical conductivity of BL MoS2 is obtained in temperature regime from 80 K to 280 K. Through fitting the experimental data with the theoretical formula, the key sample parameters of BL MoS2 can be determined, such as the electron density, the electronic relaxation time and the electronic localization factor. The temperature dependence of these parameters is examined and analyzed. We find that, similar to monolayer (ML) MoS2, BL MoS2 with 2H-stacking can respond strongly to THz radiation field and show semiconductor-like optoelectronic features. The theoretical calculations using density functional theory (DFT) can help us to further understand why the THz optoelectronic properties of BL MoS2 differ from those observed for ML MoS2. The results obtained from this study indicate that the THz TDS can be applied suitably to study the optoelectronic properties of BL MoS2 based twistronic systems for novel applications as optical and optoelectronic materials and devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000991955300002 Publication Date 2023-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0462; 2095-0470 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.5; 2023 IF: 2.579  
  Call Number UA @ admin @ c:irua:197398 Serial 8818  
Permanent link to this record
 

 
Author Borah, R.; Kumar, A.; Samantaray, M.; Desai, A.; Tseng, F.-G. pdf  doi
openurl 
  Title Photothermal heating of Au nanorods and nanospheres : temperature characteristics and strength of convective forces Type A1 Journal article
  Year 2023 Publication Plasmonics Abbreviated Journal  
  Volume (down) 18 Issue 4 Pages 1449-1465  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The nanoscale photothermal effect and the optofluidic convection around plasmonic nanoparticles drive the application of such nanoparticles in micro-environment. In this work, heat transfer and fluid flow around Au nanospheres and nanorods in water medium under continuous and pulsed wave laser irradiance was investigated using an FEM based numerical framework. Au nanospheres of a wide range of diameter: 40 nm = Diameter (D) = 180 nm and relatively large nanorods (diameter: 50 nm) with varying aspect ratio (1 = Aspect ratio (A) = 5) and orientation (0 degrees = ? = 90 degrees, ? = 0 degrees, 90 degrees) with respect to the incident EM radiation were investigated for continuous wave (CW) and pulsed wave laser. It was found that although nanorods can attain much higher temperature than nanospheres, orientation of a nanorod is an important factor to be carefully considered in applications. In micro-scale spherical and hemispherical confinements (diameter < 14.4 p.m), the convective velocity fields around nanoparticles is in the order of 10-9 m/s, with only a weak effect of the slip or no-slip boundary condition on the confining walls. Importantly, the size of the confinement has a strong effect leading to an order of magnitude stronger convection for 14.4 p.m (diameter) spherical confinement as compared to 3.6 p.m confinement. Additionally close proximity of the nanoparticles to the confining walls strongly reduces (by an order of magnitude) the convective currents. The results reported herein provides important insights for the use of photothermal nanoparticles in microscale confined space (e.g. cellular environment) for applications such as optical tweezers, photoporation, etc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985445100001 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1955; 1557-1963 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3; 2023 IF: 2.139  
  Call Number UA @ admin @ c:irua:197380 Serial 8914  
Permanent link to this record
 

 
Author Tran, T.T.; Lee, Y.; Roy, S.; Tran, T.U.; Kim, Y.; Taniguchi, T.; Watanabe, K.; Milošević, M.V.; Lim, S.C.; Chaves, A.; Jang, J.I.; Kim, J. pdf  doi
openurl 
  Title Synergetic enhancement of quantum yield and exciton lifetime of monolayer WS₂ by proximal metal plate and negative electric bias Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume (down) 18 Issue 1 Pages 220-228  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The efficiency of light emission is a critical performance factor for monolayer transition metal dichalcogenides (1L-TMDs) for photonic applications. While various methods have been studied to compensate for lattice defects to improve the quantum yield (QY) of 1L-TMDs, exciton-exciton annihilation (EEA) is still a major nonradiative decay channel for excitons at high exciton densities. Here, we demonstrate that the combined use of a proximal Au plate and a negative electric gate bias (NEGB) for 1L-WS2 provides a dramatic enhancement of the exciton lifetime at high exciton densities with the corresponding QY enhanced by 30 times and the EEA rate constant decreased by 80 times. The suppression of EEA by NEGB is attributed to the reduction of the defect-assisted EEA process, which we also explain with our theoretical model. Our results provide a synergetic solution to cope with EEA to realize high-intensity 2D light emitters using TMDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001139516800001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202811 Serial 9101  
Permanent link to this record
 

 
Author Kante, M.V.; Weber, M.L.; Ni, S.; van den Bosch, I.C.G.; van der Minne, E.; Heymann, L.; Falling, L.J.; Gauquelin, N.; Tsvetanova, M.; Cunha, D.M.; Koster, G.; Gunkel, F.; Nemsak, S.; Hahn, H.; Estrada, L.V.; Baeumer, C. url  doi
openurl 
  Title A high-entropy oxide as high-activity electrocatalyst for water oxidation Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume (down) 17 Issue 6 Pages 5329-5339  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-delta with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono-or bimetallic oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953440900001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:196097 Serial 7390  
Permanent link to this record
 

 
Author Zhang, G.; Huang, S.; Chaves, A.; Yan, H. pdf  doi
openurl 
  Title Black phosphorus as tunable Van der Waals quantum wells with high optical quality Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume (down) 17 Issue 6 Pages 6073-6080  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Van der Waals quantum wells, naturally formed in two-dimensional layered materials with nanoscale thickness, possess many inherent advantages over conventional molecular beam epitaxy grown counterparts, and could bring up intriguing physics and applications. However, optical transitions originated from the series of quantized states in these emerging quantum wells are still elusive. Here, we show that multilayer black phosphorus appears to be an excellent candidate for van der Waals quantum wells with well-defined subbands and high optical quality. Using infrared absorption spectroscopy, we probe subband structures of multilayer black phosphorus with tens of atomic layers, revealing clear signatures for optical transitions with subband index as high as 10, far from what was attainable previously. Surprisingly, in addition to allowed transitions, an unexpected series of “forbidden” transitions is also evidently observed, which enables us to determine energy spacings separately for conduction and valence subbands. Furthermore, the linear tunability of subband spacings by temperature and strain is demonstrated. Our results are expected to facilitate potential applications for infrared optoelectronics based on tunable van der Waals quantum wells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953463300001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:196100 Serial 7565  
Permanent link to this record
 

 
Author Byrnes, I.; Rossbach, L.M.; Brede, D.A.; Grolimund, D.; Sanchez, D.F.; Nuyts, G.; Cuba, V.; Reinoso-Maset, E.; Salbu, B.; Janssens, K.; Oughton, D.; Scheibener, S.; Teien, H.-C.; Lind, O.C. url  doi
openurl 
  Title Synchrotron-based X-ray fluorescence imaging elucidates uranium toxicokinetics in Daphnia magna Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume (down) 17 Issue 6 Pages 5296-5305  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract A combination of synchrotron-based elemental anal-ysis and acute toxicity tests was used to investigate the biodistribution and adverse effects in Daphnia magna exposed to uranium nanoparticle (UNP, 3-5 nm) suspensions or to uranium reference (Uref) solutions. Speciation analysis revealed similar size distributions between exposures, and toxicity tests showed com-parable acute effects (UNP LC50: 402 mu g L-1 [336-484], Uref LC50: 268 mu g L-1 [229-315]). However, the uranium body burden was 3 -to 5-fold greater in UNP-exposed daphnids, and analysis of survival as a function of body burden revealed a similar to 5-fold higher specific toxicity from the Uref exposure. High-resolution X-ray fluorescence elemental maps of intact, whole daphnids from sublethal, acute exposures of both treatments revealed high uranium accumulation onto the gills (epipodites) as well as within the hepatic ceca and the intestinal lumen. Uranium uptake into the hemolymph circulatory system was inferred from signals observed in organs such as the heart and the maxillary gland. The substantial uptake in the maxillary gland and the associated nephridium suggests that these organs play a role in uranium removal from the hemolymph and subsequent excretion. Uranium was also observed associated with the embryos and the remnants of the chorion, suggesting uptake in the offspring. The identification of target organs and tissues is of major importance to the understanding of uranium and UNP toxicity and exposure characterization that should ultimately contribute to reducing uncertainties in related environmental impact and risk assessments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000960129800001 Publication Date 2023-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:196061 Serial 8631  
Permanent link to this record
 

 
Author Zhang, Y.; van Schayck, J.P.; Pedrazo-Tardajos, A.; Claes, N.; Noteborn, W.E.M.; Lu, P.-H.; Duimel, H.; Dunin-Borkowski, R.E.; Bals, S.; Peters, P.J.; Ravelli, R.B.G. pdf  url
doi  openurl
  Title Charging of vitreous samples in cryogenic electron microscopy mitigated by graphene Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume (down) 17 Issue 16 Pages 15836-15846  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Cryogenic electronmicroscopy can provide high-resolution reconstructionsof macromolecules embedded in a thin layer of ice from which atomicmodels can be built de novo. However, the interactionbetween the ionizing electron beam and the sample results in beam-inducedmotion and image distortion, which limit the attainable resolutions.Sample charging is one contributing factor of beam-induced motionsand image distortions, which is normally alleviated by including partof the supporting conducting film within the beam-exposed region.However, routine data collection schemes avoid strategies wherebythe beam is not in contact with the supporting film, whose rationaleis not fully understood. Here we characterize electrostatic chargingof vitreous samples, both in imaging and in diffraction mode. We mitigatesample charging by depositing a single layer of conductive grapheneon top of regular EM grids. We obtained high-resolution single-particleanalysis (SPA) reconstructions at 2 & ANGS; when the electron beamonly irradiates the middle of the hole on graphene-coated grids, usingdata collection schemes that previously failed to produce sub 3 & ANGS;reconstructions without the graphene layer. We also observe that theSPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to dataobtained without the graphene layer. This mitigation of charging couldhave broad implications for various EM techniques, including SPA andcryotomography, and for the study of radiation damage and the developmentof future sample carriers. Furthermore, it may facilitate the explorationof more dose-efficient, scanning transmission EM based SPA techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001041649900001 Publication Date 2023-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes We thank H. Nguyen for editing the manuscript. We warmly thank the M4i Microscopy CORE Lab team of FHML Maastricht University (MU) for their support and collaboration and Eve Timlin and Ye Gao (MU) for providing protein samples. Members of the Amsterdam Scientific Instruments team are acknowledged for their Timepix detector support. This work benefited from access to The Netherlands Centre for Electron Nanoscopy (NeCEN) with assistance from Ludovic Renault and Meindert Lamers. The authors acknowledge financial support of the Netherlands Electron Microscopy Infrastructure (NEMI), project number 184.034.014 of the National Roadmap for Large-Scale Research Infrastructure of the Dutch Research Council (NWO), the PPP Allowance made available by Health-Holland, Top Sector Life Sciences & Health, to stimulate public-private partnerships, project 4DEM, number LSHM21029, and the LINK program from the Province of Limburg, The Netherlands, as well as financial support from the European Commission under the Horizon 2020 Programme by grant no. 815128 (REALNANO). Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:198376 Serial 8840  
Permanent link to this record
 

 
Author Vega-Paredes, M.; Aymerich-Armengol, R.; Arenas Esteban, D.; Marti-Sanchez, S.; Bals, S.; Scheu, C.; Manjon, A.G. url  doi
openurl 
  Title Electrochemical stability of rhodium-platinum core-shell nanoparticles : an identical location scanning transmission electron microscopy study Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume (down) 17 Issue 17 Pages 16943-16951  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Rhodium-platinum core-shell nanoparticleson a carbonsupport (Rh@Pt/C NPs) are promising candidates as anode catalystsfor polymer electrolyte membrane fuel cells. However, their electrochemicalstability needs to be further explored for successful applicationin commercial fuel cells. Here we employ identical location scanningtransmission electron microscopy to track the morphological and compositionalchanges of Rh@Pt/C NPs during potential cycling (10 000 cycles,0.06-0.8 V-RHE, 0.5 H2SO4)down to the atomic level, which are then used for understanding thecurrent evolution occurring during the potential cycles. Our resultsreveal a high stability of the Rh@Pt/C system and point toward particledetachment from the carbon support as the main degradation mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001051495900001 Publication Date 2023-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 2 Open Access OpenAccess  
  Notes The authors would like to thank C. Bodirsky for providing the samples, N. Rivas Rivas for his corrections on the manuscript, and D. Chatain for providing her expertise on the equilibrium shape of nanoparticles. Special thanks to B. Breitbach for performing the XRD experiments. A.G.M. acknowledges the Grant RYC2021-033479- I funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by European Union NextGenerationEU/PRTR. Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:199253 Serial 8859  
Permanent link to this record
 

 
Author Zaryouh, H.; Verswyvel, H.; Bauwens, M.; Van Haesendonck, G.; Deben, C.; Lin, A.; De Waele, J.; Vermorken, J.B.; Koljenovic, S.; Bogaerts, A.; Lardon, F.; Smits, E.; Wouters, A. openurl 
  Title De belofte van hoofdhalskankerorganoïden in kankeronderzoek : een blik op de toekomst Type A2 Journal article
  Year 2023 Publication Onco-hemato : multidisciplinair tijdschrift voor oncologie Abbreviated Journal  
  Volume (down) 17 Issue 7 Pages 54-58  
  Keywords A2 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hoofd-halskanker vormt een aanzienlijke uitdaging met bijna 900.000 nieuwe diagnoses per jaar, waarbij de jaarlijkse incidentie blijft stijgen. Vaak wordt de diagnose pas in een laat stadium gesteld, wat complexe behandelingen noodzakelijk maakt. Terugval van patiënten is helaas een veelvoorkomend probleem. De gemiddelde overlevingsduur is beperkt tot enkele maanden. Daarom is er een dringende behoefte om nieuwe, veelbelovende behandelingen te ontwikkelen voor patiënten met hoofd-halskanker. Voor het bereiken van deze vooruitgang spelen innovatieve studiemodellen een cruciale rol. Het ontwikkelen van deze nieuwe behandelingen start met laboratoriumonderzoek, waarbij traditionele tweedimensionale celculturen hun beperkingen hebben. Daarom verschuiven onderzoekers hun aandacht meer en meer naar geavanceerdere driedimensionale modellen, met hoofd-halskankerorganoïden als beloftevol nieuw model. Dit model behoudt immers zowel het genetische profiel als de morfologische kenmerken van de originele tumor van de hoofd-halskankerpatiënt. Hoofdhalskankerorganoïden bieden daarom de mogelijkheid om innovatieve behandelingen te testen en kunnen mogelijk zelfs de respons van een patiënt op bepaalde therapieën voorspellen. Hoewel tumororganoïden als ‘patiënt-in-het-lab’ veelbelovend zijn, zijn er uitdagingen te overwinnen, zoals de ontwikkelingstijd en de toepasbaarheid bij alle tumortypes, evenals het ontbreken van immuuncellen en andere micro-omgevingscomponenten. Er is daarom een grote behoefte aan gestandaardiseerde protocollen voor de ontwikkeling van organoïden en verkorting van de ontwikkelingstijd. Concluderend bieden driedimensionale hoofd-halskankerorganoïden een veelbelovend perspectief voor de toekomst van kankerbehandelingen. Ze hebben het potentieel om bij te dragen aan de ontwikkeling van gepersonaliseerde behandelingen en zo de overlevingskansen van kankerpatiënten te verbeteren. Het is echter belangrijk om hun voorspellend vermogen en toepassingsmogelijkheden verder te onderzoeken, voordat ze op grote schaal worden geïmplementeerd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2030-2738 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202271 Serial 9004  
Permanent link to this record
 

 
Author McLachlan, G.; Majdak, P.; Reijniers, J.; Mihocic, M.; Peremans, H. url  doi
openurl 
  Title Dynamic spectral cues do not affect human sound localization during small head movements Type A1 Journal article
  Year 2023 Publication Frontiers in neuroscience Abbreviated Journal  
  Volume (down) 17 Issue Pages 1027827-10  
  Keywords A1 Journal article; Psychology; Condensed Matter Theory (CMT); Engineering Management (ENM)  
  Abstract Natural listening involves a constant deployment of small head movement. Spatial listening is facilitated by head movements, especially when resolving front-back confusions, an otherwise common issue during sound localization under head-still conditions. The present study investigated which acoustic cues are utilized by human listeners to localize sounds using small head movements (below ±10° around the center). Seven normal-hearing subjects participated in a sound localization experiment in a virtual reality environment. Four acoustic cue stimulus conditions were presented (full spectrum, flattened spectrum, frozen spectrum, free-field) under three movement conditions (no movement, head rotations over the yaw axis and over the pitch axis). Localization performance was assessed using three metrics: lateral and polar precision error and front-back confusion rate. Analysis through mixed-effects models showed that even small yaw rotations provide a remarkable decrease in front-back confusion rate, whereas pitch rotations did not show much of an effect. Furthermore, MSS cues improved localization performance even in the presence of dITD cues. However, performance was similar between stimuli with and without dMSS cues. This indicates that human listeners utilize the MSS cues before the head moves, but do not rely on dMSS cues to localize sounds when utilizing small head movements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000938567400001 Publication Date 2023-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-4548; 1662-453x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:194507 Serial 9025  
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L. url  doi
openurl 
  Title Correction: From the Birkeland–Eyde process towards energy-efficient plasma-based NOXsynthesis: a techno-economic analysis Type A1 Journal Article
  Year 2023 Publication Energy & Environmental Science Abbreviated Journal Energy Environ. Sci.  
  Volume (down) 16 Issue 12 Pages 6170-6173  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Correction for ‘From the Birkeland–Eyde process towards energy-efficient plasma-based NO<sub><italic>X</italic></sub>synthesis: a techno-economic analysis’ by Kevin H. R. Rouwenhorst<italic>et al.</italic>,<italic>Energy Environ. Sci.</italic>, 2021,<bold>14</bold>, 2520–2534, https://doi.org/10.1039/D0EE03763J.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links  
  Impact Factor 32.5 Times cited Open Access  
  Notes H2020 European Research Council; Horizon 2020, 810182 ; Ministerie van Economische Zaken en Klimaat; Approved Most recent IF: 32.5; 2023 IF: 29.518  
  Call Number PLASMANT @ plasmant @ Serial 8980  
Permanent link to this record
 

 
Author Peeters, H.; Lenaerts, S.; Verbruggen, S.W. url  doi
openurl 
  Title Benchmarking the photocatalytic self-cleaning activity of industrial and experimental materials with ISO 27448:2009 Type A1 Journal article
  Year 2023 Publication Materials Abbreviated Journal Materials  
  Volume (down) 16 Issue 3 Pages 1119-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Various industrial surface materials are tested for their photocatalytic self-cleaning activity by performing the ISO 27448:2009 method. The samples are pre-activated by UV irradiation, fouled with oleic acid and irradiated by UV light. The degradation of oleic acid over time is monitored by taking water contact angle measurements using a contact angle goniometer. The foulant, oleic acid, is an organic acid that makes the surface more hydrophobic. The water contact angle will thus decrease over time as the photocatalytic material degrades the oleic acid. In this study, we argue that the use of this method is strongly limited to specific types of surface materials, i.e., only those that are hydrophilic and smooth in nature. For more hydrophobic materials, the difference in the water contact angles of a clean surface and a fouled surface is not measurable. Therefore, the photocatalytic self-cleaning activity cannot be established experimentally. Another type of material that cannot be tested by this standard are rough surfaces. For rough surfaces, the water contact angle cannot be measured accurately using a contact angle goniometer as prescribed by the standard. Because of these limitations, many potentially interesting industrial substrates cannot be evaluated. Smooth samples that were treated with an in-house developed hydrophilic titania thin film (PCT/EP2018/079983) showed a great photocatalytic self-cleaning performance according to the ISO standard. Apart from discussing the pros and cons of the current ISO standard, we also stress how to carefully interpret the results and suggest alternative testing solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000930734100001 Publication Date 2023-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4; 2023 IF: 2.654  
  Call Number UA @ admin @ c:irua:193337 Serial 7284  
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Blommaerts, N.; Lenaerts, S.; Cool, P.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Recent trends in plasmon‐assisted photocatalytic CO₂ reduction Type A1 Journal article
  Year 2023 Publication Chemsuschem Abbreviated Journal  
  Volume (down) 16 Issue 5 Pages e202201647-25  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4, CO, CH3OH/CH3CH2OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926901300001 Publication Date 2023-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 7.226  
  Call Number UA @ admin @ c:irua:193633 Serial 7335  
Permanent link to this record
 

 
Author Perreault, P.; Boruntea, C.-R.; Dhawan Yadav, H.; Portela Soliño, I.; Kummamuru, N.B. url  doi
openurl 
  Title Combined methane pyrolysis and solid carbon gasification for electrified CO₂-free hydrogen and syngas production Type A1 Journal article
  Year 2023 Publication Energies Abbreviated Journal  
  Volume (down) 16 Issue 21 Pages 7316-7320  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The coupling of methane pyrolysis with the gasification of a solid carbon byproduct provides CO2-free hydrogen and hydrogen-rich syngas, eliminating the conundrum of carbon utilization. Firstly, the various types of carbon that are known to result during the pyrolysis process and their dependencies on the reaction conditions for catalytic and noncatalytic systems are summarized. The synchronization of the reactions’ kinetics is considered to be of paramount importance for efficient performance. This translates to the necessity of finding suitable reaction conditions, carbon reactivities, and catalysts that might enable control over competing reactions through the manipulation of the reaction rates. As a consequence, the reaction kinetics of methane pyrolysis is then emphasized, followed by the particularities of carbon deposition and the kinetics of carbon gasification. Given the urgency in finding suitable solutions for decarbonizing the energy sector and the limited information on the gasification of pyrolytic carbon, more research is needed and encouraged in this area. In order to provide CO2-free hydrogen production, the reaction heat should also be provided without CO2. Electrification is one of the solutions, provided that low-carbon sources are used to generate the electricity. Power-to-heat, i.e., where electricity is used for heating, represents the first step for the chemical industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001103312100001 Publication Date 2023-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1073 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200456 Serial 8842  
Permanent link to this record
 

 
Author Craig, T.M.; Kadu, A.A.; Batenburg, K.J.; Bals, S. url  doi
openurl 
  Title Real-time tilt undersampling optimization during electron tomography of beam sensitive samples using golden ratio scanning and RECAST3D Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume (down) 15 Issue 11 Pages 5391-5402  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography is a widely used technique for 3D structural analysis of nanomaterials, but it can cause damage to samples due to high electron doses and long exposure times. To minimize such damage, researchers often reduce beam exposure by acquiring fewer projections through tilt undersampling. However, this approach can also introduce reconstruction artifacts due to insufficient sampling. Therefore, it is important to determine the optimal number of projections that minimizes both beam exposure and undersampling artifacts for accurate reconstructions of beam-sensitive samples. Current methods for determining this optimal number of projections involve acquiring and post-processing multiple reconstructions with different numbers of projections, which can be time-consuming and requires multiple samples due to sample damage. To improve this process, we propose a protocol that combines golden ratio scanning and quasi-3D reconstruction to estimate the optimal number of projections in real-time during a single acquisition. This protocol was validated using simulated and realistic nanoparticles, and was successfully applied to reconstruct two beam-sensitive metal–organic framework complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000937908900001 Publication Date 2023-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 1 Open Access OpenAccess  
  Notes H2020 European Research Council, 815128 ; H2020 Marie Skłodowska-Curie Actions, 860942 ; Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number EMAT @ emat @c:irua:195235 Serial 7260  
Permanent link to this record
 

 
Author Shi, P.; Wang, L.; Quinn, B.K.K.; Gielis, J. url  doi
openurl 
  Title A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds Type A1 Journal article
  Year 2023 Publication Symmetry Abbreviated Journal Symmetry-Basel  
  Volume (down) 15 Issue 1 Pages 231-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Preston's equation is a general model describing the egg shape of birds. The parameters of Preston's equation are usually estimated after re-expressing it as the Todd-Smart equation and scaling the egg's actual length to two. This method assumes that the straight line through the two points on an egg's profile separated by the maximum distance (i.e., the longest axis of an egg's profile) is the mid-line. It hypothesizes that the photographed egg's profile is perfectly bilaterally symmetrical, which seldom holds true because of photographic errors and placement errors. The existing parameter estimation method for Preston's equation considers an angle of deviation for the longest axis of an egg's profile from the mid-line, which decreases prediction errors to a certain degree. Nevertheless, this method cannot provide an accurate estimate of the coordinates of the egg's center, and it leads to sub-optimal parameter estimation. Thus, it is better to account for the possible asymmetry between the two sides of an egg's profile along its mid-line when fitting egg-shape data. In this paper, we propose a method based on the optimization algorithm (optimPE) to fit egg-shape data and better estimate the parameters of Preston's equation by automatically searching for the optimal mid-line of an egg's profile and testing its validity using profiles of 59 bird eggs spanning a wide range of existing egg shapes. We further compared this method with the existing one based on multiple linear regression (lmPE). This study demonstrated the ability of the optimPE method to estimate numerical values of the parameters of Preston's equation and provide the theoretical egg length (i.e., the distance between two ends of the mid-line of an egg's profile) and the egg's maximum breadth. This provides a valuable approach for comparing egg shapes among conspecifics or across different species, or even different classes (e.g., birds and reptiles), in future investigations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000927531000001 Publication Date 2023-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 1.457  
  Call Number UA @ admin @ c:irua:195347 Serial 7279  
Permanent link to this record
 

 
Author Bhatia, H.; Martin, C.; Keshavarz, M.; Dovgaliuk, I.; Schrenker, N.J.; Ottesen, M.; Qiu, W.; Fron, E.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Roeffaers, M.B.J.; Hofkens, J.; Debroye, E. pdf  doi
openurl 
  Title Deciphering the role of water in promoting the optoelectronic performance of surface-engineered lead halide perovskite nanocrystals Type A1 Journal article
  Year 2023 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume (down) 15 Issue 5 Pages 7294-7307  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Lead halide perovskites are promising candidates for applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and watertreated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000931729400001 Publication Date 2023-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 3 Open Access Not_Open_Access  
  Notes H.B. would like to express her sincere gratitude to Dr. Peter Erk (formerly BASF SE, Germany) for very insightful discussions. The authors acknowledge financial support from the Research Foundation-Flanders (FWO grant numbers S002019N, 1514220N, G.0B39.15, G.0B49.15, G098319N, and ZW15_09-GOH6316) , the KU Leuven Research Fund (C14/19/079, iBOF-21-085 PERSIST, and STG/21/010) , the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) , the Hercules Founda-tion (HER/11/14) , and the ERC through the Marie Curie ITN iSwitch Ph.D. fellowship to H.B. (grant number 642196) . C.M. acknowledges the financial support from grants PID2021-128761OA-C22 funded by MCIN/AEI/10.13039/501100011033 by the ?European Union? and SBPLY/21/180501/000127 funded by JCCM and by the EU through Fondo Europeo de Desarollo Regional? (FEDER) . Martin Bremholm and Martin Ottesen acknowledge funding from the Danish Council for Independent Research, Natural Sciences, under the Sapere Aude program (grant no. 7027-00077B) and VILLUM FONDEN through the Centre of Excellence for Dirac Materials (grant no. 11744) . Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged.-N.J.S. acknowledges financial support from the research foundation Flanders (FWO) through a postdoctoral fellowship (FWO grant no. 1238622N) . S.B. acknowledges financial support from the European Commission by the ERC Consolidator grant REALNANO (no. 815128) . Approved Most recent IF: 9.5; 2023 IF: 7.504  
  Call Number UA @ admin @ c:irua:195375 Serial 7293  
Permanent link to this record
 

 
Author Smeyers, R.; Milošević, M.V.; Covaci, L. url  doi
openurl 
  Title Strong gate-tunability of flat bands in bilayer graphene due to moiré encapsulation between hBN monolayers Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume (down) 15 Issue 9 Pages 4561-4569  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract When using hexagonal boron-nitride (hBN) as a substrate for graphene, the resulting moire pattern creates secondary Dirac points. By encapsulating a multilayer graphene within aligned hBN sheets the controlled moire stacking may offer even richer benefits. Using advanced tight-binding simulations on atomistically-relaxed heterostructures, here we show that the gap at the secondary Dirac point can be opened in selected moire-stacking configurations, and is independent of any additional vertical gating of the heterostructure. On the other hand, gating can broadly tune the gap at the principal Dirac point, and may thereby strongly compress the first moire mini-band in width against the moire-induced gap at the secondary Dirac point. We reveal that in hBN-encapsulated bilayer graphene this novel mechanism can lead to isolated bands flatter than 10 meV under moderate gating, hence presenting a convenient pathway towards electronically-controlled strongly-correlated states on demand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000933052600001 Publication Date 2023-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:195249 Serial 7340  
Permanent link to this record
 

 
Author Mulder, J.T.; Meijer, M.S.; van Blaaderen, J.J.; du Fosse, I.; Jenkinson, K.; Bals, S.; Manna, L.; Houtepen, A.J. url  doi
openurl 
  Title Understanding and preventing photoluminescence quenching to achieve unity photoluminescence quantum yield in Yb:YLF nanocrystals Type A1 Journal article
  Year 2023 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume (down) 15 Issue 2 Pages 3274-3286  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ytterbium-doped LiYF4 (Yb:YLF) is a commonly used material for laser applications, as a photon upconversion medium, and for optical refrigeration. As nanocrystals (NCs), the material is also of interest for biological and physical applications. Unfortunately, as with most phosphors, with the reduction in size comes a large reduction of the photoluminescence quantum yield (PLQY), which is typically associated with an increase in surface-related PL quenching. Here, we report the synthesis of bipyramidal Yb:YLF NCs with a short axis of similar to 60 nm. We systematically study and remove all sources of PL quenching in these NCs. By chemically removing all traces of water from the reaction mixture, we obtain NCs that exhibit a near-unity PLQY for an Yb3+ concentration below 20%. At higher Yb3+ concentrations, efficient concentration quenching occurs. The surface PL quenching is mitigated by growing an undoped YLF shell around the NC core, resulting in near-unity PLQY values even for fully Yb3+-based LiYbF4 cores. This unambiguously shows that the only remaining quenching sites in core-only Yb:YLF NCs reside on the surface and that concentration quenching is due to energy transfer to the surface. Monte Carlo simulations can reproduce the concentration dependence of the PLQY. Surprisingly, Fo''rster resonance energy transfer does not give satisfactory agreement with the experimental data, whereas nearest-neighbor energy transfer does. This work demonstrates that Yb3+-based nanophosphors can be synthesized with a quality close to that of bulk single crystals. The high Yb3+ concentration in the LiYbF4/LiYF4 core/shell nanocrystals increases the weak Yb3+ absorption, making these materials highly promising for fundamental studies and increasing their effectiveness in bioapplications and optical refrigeration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000912997300001 Publication Date 2023-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 3 Open Access OpenAccess  
  Notes This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 766900 (Testing the Large-Scale Limit of Quantum Mechanics). A.J.H. and I.d.F. further acknowledge the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand) for financial support. The authors thank Freddy Rabouw and Andries Meijerink (Utrecht University) for very fruitful discussions and extremely useful advice. The author s thank Jos Thieme for his help with the laser setups used . The authors furthermore thank Niranjan Saikumar for proofreading the manuscript. Approved Most recent IF: 9.5; 2023 IF: 7.504  
  Call Number UA @ admin @ c:irua:194317 Serial 7348  
Permanent link to this record
 

 
Author Chinnabathini, V.C.; Dingenen, F.; Borah, R.; Abbas, I.; van der Tol, J.; Zarkua, Z.; D'Acapito, F.; Nguyen, T.H.T.; Lievens, P.; Grandjean, D.; Verbruggen, S.W.; Janssens, E. doi  openurl
  Title Gas phase deposition of well-defined bimetallic gold-silver clusters for photocatalytic applications Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume (down) 15 Issue 14 Pages 6696-6708  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Cluster beam deposition is employed for fabricating well-defined bimetallic plasmonic photocatalysts to enhance their activity while facilitating a more fundamental understanding of their properties. AuxAg1-x clusters with compositions (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) spanning the metals' miscibility range were produced in the gas-phase and soft-landed on TiO2 P25-coated silicon wafers with an optimal coverage of 4 atomic monolayer equivalents. Electron microscopy images show that at this coverage most clusters remain well dispersed whereas EXAFS data are in agreement with the finding that the deposited clusters have an average size of ca. 5 nm and feature the same composition as the ablated alloy targets. A composition-dependant electron transfer from Au to Ag that is likely to impart chemical stability to the bimetallic clusters and protect Ag atoms against oxidation is additionally evidenced by XPS and XANES. Under simulated solar light, AuxAg1-x clusters show a remarkable composition-dependent volcano-type enhancement of their photocatalytic activity towards degradation of stearic acid, a model compound for organic fouling on surfaces. The Formal Quantum Efficiency (FQE) is peaking at the Au0.3Ag0.7 composition with a value that is twice as high as that of the pristine TiO2 P25 under solar simulator. Under UV the FQE of all compositions remains similar to that of pristine TiO2. A classical electromagnetic simulation study confirms that among all compositions Au0.3Ag0.7 features the largest near-field enhancement in the wavelength range of maximal solar light intensity, as well as sufficient individual photon energy resulting in a better photocatalytic self-cleaning activity. This allows ascribing the mechanism for photocatalysis mostly to the plasmonic effect of the bimetallic clusters through direct electron injection and near-field enhancement from the resonant cluster towards the conduction band of TiO2. These results not only demonstrate the added value of using well-defined bimetallic nanocatalysts to enhance their photocatalytic activity but also highlights the potential of the cluster beam deposition to design tailored noble metal modified photocatalytic surfaces with controlled compositions and sizes without involving potentially hazardous chemical agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968631100001 Publication Date 2023-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:196040 Serial 7988  
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Geuens, J.; Van Schaeren, R.; Lenaerts, S. url  doi
openurl 
  Title Can we find an optimal fatty acid composition of biodiesel in order to improve oxidation stability? Type A1 Journal article
  Year 2023 Publication Sustainability Abbreviated Journal  
  Volume (down) 15 Issue 13 Pages 10310-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Medical Genetics (MEDGEN)  
  Abstract Air quality currently poses a major risk for human health. Currently, diesel is widely used as fuel and is a significant source of nitrogen oxides (NOx) and particulate matter (PM), both hazardous to human health. A good alternative for mineral diesel is biodiesel, not only for the improvement of hazardous components in the exhaust gases but also because it can be produced in view of a circular economy. Biodiesel consists of a mix of different fatty acid methyl esters, which can react with oxygen. As a consequence, the oxidation stability of biodiesel has to be studied, because the oxidation of biodiesel could affect the performance of the engine due to the wear of injectors and fuel pumps. The oxidation stability could also affect the quality of the exhaust gases due to increases in NOx and PM. The basic question we try to answer in this communication is: 'Can we find an optimal fatty acid composition in order to have a maximal oxidation stability?' In this article, we try to find the optimal fatty acid composition according to the five most common fatty acid methyl esters present in biodiesel in order to reach a maximal oxidation stability. The measurements and statistical analysis show, however, that there is no useful regression model because there are statistically significant two- and three-way interactions among the different fatty acids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001028597300001 Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9; 2023 IF: 1.789  
  Call Number UA @ admin @ c:irua:198241 Serial 8839  
Permanent link to this record
 

 
Author Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C. doi  openurl
  Title Gaussian approximation potentials for accurate thermal properties of two-dimensional materials Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume (down) 15 Issue 19 Pages 8772-8780  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional materials (2DMs) continue to attract a lot of attention, particularly for their extreme flexibility and superior thermal properties. Molecular dynamics simulations are among the most powerful methods for computing these properties, but their reliability depends on the accuracy of interatomic interactions. While first principles approaches provide the most accurate description of interatomic forces, they are computationally expensive. In contrast, classical force fields are computationally efficient, but have limited accuracy in interatomic force description. Machine learning interatomic potentials, such as Gaussian Approximation Potentials, trained on density functional theory (DFT) calculations offer a compromise by providing both accurate estimation and computational efficiency. In this work, we present a systematic procedure to develop Gaussian approximation potentials for selected 2DMs, graphene, buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We validate our approach through calculations that require various levels of accuracy in interatomic interactions. The calculated phonon dispersion curves and lattice thermal conductivity, obtained through harmonic and anharmonic force constants (including fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in which the generated GAP potentials were used to compute higher-order force constants instead of DFT, demonstrated the first-principles level accuracy of the potentials for interatomic force description. Molecular dynamics simulations based on phonon density of states calculations, which agree closely with DFT-based calculations, also show the success of the generated potentials in high-temperature simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000976615200001 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:196722 Serial 8873  
Permanent link to this record
 

 
Author Sevik, C.; Bekaert, J.; Milošević, M.V. url  doi
openurl 
  Title Superconductivity in functionalized niobium-carbide MXenes Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume (down) 15 Issue 19 Pages 8792-8799  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We detail the effects of Cl and S functionalization on the superconducting properties of layered (bulk) and monolayer niobium carbide (Nb2C) MXene crystals, based on first-principles calculations combined with Eliashberg theory. For bulk layered Nb2CCl2, the calculated superconducting transition temperature (T-c) is in very good agreement with the recently measured value of 6 K. We show that T-c is enhanced to 10 K for monolayer Nb2CCl2, due to an increase in the density of states at the Fermi level, and the corresponding electron-phonon coupling. We further demonstrate feasible gate- and strain-induced enhancements of T-c for both bulk-layered and monolayer Nb2CCl2 crystals, resulting in T-c values of around 38 K. In the S-functionalized Nb2CCl2 crystals, our calculations reveal the importance of phonon softening in understanding their superconducting properties. Finally, we predict that Nb3C2S2 in bulk-layered and monolayer forms is also superconducting, with a T-c of around 28 K. Considering that Nb2C is not superconducting in pristine form, our findings promote functionalization as a pathway towards robust superconductivity in MXenes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000976973900001 Publication Date 2023-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:196711 Serial 8938  
Permanent link to this record
 

 
Author Yu, CP.; Vega Ibañez, F.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Quantum wavefront shaping with a 48-element programmable phase plate for electrons Type A1 Journal Article
  Year 2023 Publication SciPost Physics Abbreviated Journal SciPost Phys.  
  Volume (down) 15 Issue Pages 223  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)  
  Abstract We present a 48-element programmable phase plate for coherent electron waves produced by a combination of photolithography and focused ion beam. This brings the highly successful concept of wavefront shaping from light optics into the realm of electron optics and provides an important new degree of freedom to prepare electron quantum states. The phase plate chip is mounted on an aperture rod placed in the C2 plane of a transmission electron microscope operating in the 100-300 kV range. The phase plate's behavior is characterized by a Gerchberg-Saxton algorithm, showing a phase sensitivity of 0.075 rad/mV at 300 kV, with a phase resolution of approximately 3x10e−3π. In addition, we provide a brief overview of possible use cases and support it with both simulated and experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher SciPost Place of Publication Editor  
  Language English Wos 001116838500002 Publication Date 2023-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 1 Open Access  
  Notes This project is the result of a long-term effort involving many differ- ent sources of funding: JV acknowledges funding from an ERC proof of concept project DLV- 789598 ADAPTEM, as well as a University IOF proof of concept project towards launching the AdaptEM spin-off and the eBEAM project, supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07-2020: emerging paradigms and com- munities. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3 and via The IMPRESS project from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. FV, JV, and AB acknowledge funding from G042820N ‘Explor- ing adaptive optics in transmission electron microscopy.’ CPY acknowledges funding from a TOP-BOF project from the University of Antwerp. Approved Most recent IF: 5.5; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:202037 Serial 8984  
Permanent link to this record
 

 
Author Vlasov, E.; Denisov, N.; Verbeeck, J. pdf  url
doi  openurl
  Title Low-cost electron detector for scanning electron microscope Type A1 Journal article
  Year 2023 Publication HardwareX Abbreviated Journal HardwareX  
  Volume (down) 14 Issue Pages e00413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron microscopy is an indispensable tool for the characterization of (nano) materials. Electron microscopes are typically very expensive and their internal operation is often shielded from the user. This situation can provide fast and high quality results for researchers focusing on e.g. materials science if they have access to the relevant instruments. For researchers focusing on technique development, wishing to test novel setups, however, the high entry price can lead to risk aversion and deter researchers from innovating electron microscopy technology further. The closed attitude of commercial entities about how exactly the different parts of electron microscopes work, makes it even harder for newcomers in this field. Here we propose an affordable, easy-to-build electron detector for use in a scanning electron microscope (SEM). The aim of this project is to shed light on the functioning of such detectors as well as show that even a very modest design can lead to acceptable performance while providing high flexibility for experimentation and customization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001042486000001 Publication Date 2023-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0672 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO [Grant No. S000121N]. JV acknowledges funding from the HORIZON-INFRA-2022-TECH-01-01 project IMPRESS [Grant No. 101094299]. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:195886 Serial 7252  
Permanent link to this record
 

 
Author Niklas, K.J.; Shi, P.; Gielis, J.; Schrader, J.; Niinemets, U. url  doi
openurl 
  Title Editorial: leaf functional traits : ecological and evolutionary implications Type Editorial
  Year 2023 Publication Frontiers in plant science Abbreviated Journal  
  Volume (down) 14 Issue Pages 1169558-5  
  Keywords Editorial; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000964122500001 Publication Date 2023-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-462x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.6; 2023 IF: 4.298  
  Call Number UA @ admin @ c:irua:196076 Serial 7834  
Permanent link to this record
 

 
Author Chen, H.; Xiong, Y.; Li, J.; Abed, J.; Wang, D.; Pedrazo-Tardajos, A.; Cao, Y.; Zhang, Y.; Wang, Y.; Shakouri, M.; Xiao, Q.; Hu, Y.; Bals, S.; Sargent, E.H.H.; Su, C.-Y.; Yang, Z. url  doi
openurl 
  Title Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 14 Issue 1 Pages 1719-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Despite the natural abundance and promising properties of Si, there are few examples of crystalline Si-based catalysts. Here, the authors report an epitaxial growth method to construct Co single atoms on Si for light driven CO2 reduction to syngas. Improving the dispersion of active sites simultaneous with the efficient harvest of photons is a key priority for photocatalysis. Crystalline silicon is abundant on Earth and has a suitable bandgap. However, silicon-based photocatalysts combined with metal elements has proved challenging due to silicon's rigid crystal structure and high formation energy. Here we report a solid-state chemistry that produces crystalline silicon with well-dispersed Co atoms. Isolated Co sites in silicon are obtained through the in-situ formation of CoSi2 intermediate nanodomains that function as seeds, leading to the production of Co-incorporating silicon nanocrystals at the CoSi2/Si epitaxial interface. As a result, cobalt-on-silicon single-atom catalysts achieve an external quantum efficiency of 10% for CO2-to-syngas conversion, with CO and H-2 yields of 4.7 mol g((Co))(-1) and 4.4 mol g((Co))(-1), respectively. Moreover, the H-2/CO ratio is tunable between 0.8 and 2. This photocatalyst also achieves a corresponding turnover number of 2 x 10(4) for visible-light-driven CO2 reduction over 6 h, which is over ten times higher than previously reported single-atom photocatalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000962607600018 Publication Date 2023-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 6 Open Access OpenAccess  
  Notes This work was supported by the National Natural Science Foundation of China (21821003, 21890380, 21905316), Guangdong Natural Science Foundation (2019A1515011748), the Science and Technology Planning Project of Guangdong Province (2019A050510018), Pearl River Recruitment Program of Talent (2019QN01C108), the EU Infrastructure Project EUSMI (Grant No. E190700310), and Sun Yat-sen University. D.W. acknowledges an Individual Fellowship funded by the Marie-Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by grant no. 731019 (EUSMI) and ERC Consolidator grant no. 815128 (REALNANO). This project has received funding from the European Commission Grant (EUSMI E190700310). Synchrotron XAS data described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number UA @ admin @ c:irua:196062 Serial 7932  
Permanent link to this record
 

 
Author Vijayakumar, J.; Savchenko, T.M.; Bracher, D.M.; Lumbeeck, G.; Béché, A.; Verbeeck, J.; Vajda, Š.; Nolting, F.; Vaz, Ca.f.; Kleibert, A. url  doi
openurl 
  Title Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles Type A1 Journal Article
  Year 2023 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 14 Issue 1 Pages 174  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Understanding chemical reactivity and magnetism of 3<italic>d</italic>transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co<sub>3</sub>O<sub>4</sub>and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000955726400021 Publication Date 2023-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 1 Open Access OpenAccess  
  Notes Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021160186 2002153540 ; EC | Horizon 2020 Framework Programme, 810310 823717 ; University of Basel | Swiss Nanoscience Institute, P1502 ; This work is funded by Swiss National Foundation (SNF) (Grants. No 200021160186 and 2002153540) and the Swiss Nanoscience Institut (SNI) (Grant No. SNI P1502). S.V. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 810310, which corresponds to the J. Heyrovsky Chair project (“ERA Chair at J. Heyrovský Institute of Physical Chemistry AS CR – The institutional approach towards ERA”). The funders had no role in the preparation of the article. Part of this work was performed at the Surface/Interface: Microscopy (SIM) beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. We kindly acknowledge Anja Weber and Elisabeth Müller from PSI for their help in fabricating the sample markers. A.B. and J. Verbeeck received funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No. 823717 – ESTEEM3 reported Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number EMAT @ emat @c:irua:196738 Serial 8804  
Permanent link to this record
 

 
Author Arteaga Cardona, F.; Jain, N.; Popescu, R.; Busko, D.; Madirov, E.; Arús, B.A.; Gerthsen, D.; De Backer, A.; Bals, S.; Bruns, O.T.; Chmyrov, A.; Van Aert, S.; Richards, B.S.; Hudry, D. pdf  url
doi  openurl
  Title Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals Type A1 Journal Article
  Year 2023 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 14 Issue 1 Pages 4462  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF<sub>4</sub>) or heterogeneous (CaF<sub>2</sub>) shell domains on optically-active α-NaYF<sub>4</sub>:Yb:Er (with and without Ce<sup>3+</sup>co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm<sup>2</sup>; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001037058500022 Publication Date 2023-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 1 Open Access OpenAccess  
  Notes D.H. would like to thank Dominique Ectors (Bruker AXS GmbH, Karlsruhe, Germany) for assistance and discussion on the PXRD data and TOPAS evaluations. The authors would like to acknowledge the financial support provided by the Helmholtz Association via: i) the Professorial Recruitment Initiative Funding (B.S.R.); ii) the Research Field Energy – Program Materials and Technologies for the Energy Transition – Topic 1 Photovoltaics (F.A.C., D.B., E.M., B.S.R., D.H.). This project received funding from the European Union’s Horizon 2020 innovation programme under grant agreement 823717. This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). The authors acknowledge financial support from the ResearchFoundation Flanders (FWO, Belgium) through project fundings (G.0346.21 N to S.V.A. and S.B.) and a postdoctoral grant (A.D.B.). The authors (B.A.A., O.T.B. and A.C.) acknowledge funding from the Helmholtz Zentrum München, the DFG-Emmy Noether program (BR 5355/2-1) and from the CZI Deep Tissue Imaging (DTI-0000000248). The authors (O.T.B. and D.H.) would like to thank the Helmholtz Imaging (ZT-I-PF-4-038-BENIGN). Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number EMAT @ emat @c:irua:198158 Serial 8808  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: