toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Shi, J.M.; Peeters, F.M.; Devreese, J.T. pdf  doi
openurl 
  Title Shallow donor impurities in GaAs/AlxGa1-xAs superlattices in a magnetic-field Type A1 Journal article
  Year 1994 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 50 Issue 20 Pages 15182-15190  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1994PV86500054 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 71 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:99812 Serial 2986  
Permanent link to this record
 

 
Author Leadley, D.R.; Nicholas, R.J.; Xu, W.; Peeters, F.M.; Devreese, J.T.; Singleton, J.; Perenboom, J.A.; van Bockstal, L.; Herlach, F.; Foxon, C.T.; Harris, J.J. doi  openurl
  Title High-field magnetoresistance in GaAs/Ga0.7Al0.3As heterojunctions arising from elastic and inelastic scattering Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 48 Issue 8 Pages 5457-5468  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993LV38500055 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 22 Open Access  
  Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #  
  Call Number UA @ lucian @ c:irua:5750 Serial 1430  
Permanent link to this record
 

 
Author Shi, J.M.; Peeters, F.M.; Devreese, J.T. doi  openurl
  Title Magnetopolaron effect on shallow donor states in GaAs Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 48 Issue 8 Pages 5202-5216  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993LV38500026 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 58 Open Access  
  Notes Approved CHEMISTRY, MULTIDISCIPLINARY 56/163 Q2 # CRYSTALLOGRAPHY 6/26 Q1 #  
  Call Number UA @ lucian @ c:irua:5749 Serial 1923  
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T. doi  openurl
  Title Electron optical-phonon coupling in GaAs/AlxGa1-xAs quantum wells due to interface, slab and half-space modes Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 48 Issue 7 Pages 4666-4674  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993LW02600057 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 102 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5748 Serial 981  
Permanent link to this record
 

 
Author Helm, M.; Hilber, W.; Fromherz, T.; Peeters, F.M.; Alavi, K.; Pathak, R. doi  openurl
  Title Infrared absorption in superlattices: a probe of the miniband dispersion and the structure of the impurity band Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 48 Issue Pages 1601-1606  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993LP05000028 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 61 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5785 Serial 1662  
Permanent link to this record
 

 
Author Peeters, F.M.; Matulis, A. doi  openurl
  Title Quantum structures created by nonhomogeneous magnetic fields Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 48 Issue Pages 15166-15174  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993MK54000042 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 183 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5780 Serial 2790  
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T.; Wendler, L. doi  openurl
  Title Screening of the electron-phonon interaction in quasi-one-dimensional semiconductor structures Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 48 Issue 16 Pages 12016-12022  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993ME60100059 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 41 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:5751 Serial 2955  
Permanent link to this record
 

 
Author Peeters, F.M.; Matulis, A.; Helm, M.; Fromherz, T.; Hilber, W. doi  openurl
  Title Oscillator strength and sum rule for inter-subband transitions in a superlattice Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 48 Issue Pages 12008-12015  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993ME60100058 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 28 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5782 Serial 2536  
Permanent link to this record
 

 
Author Smondyrev, M.A.; Verbist, G.; Peeters, F.M.; Devreese, J.T. doi  openurl
  Title Stability of multipolaron matter Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 47 Issue 5 Pages 2596-2601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993KL78900022 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 10 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:5745 Serial 3127  
Permanent link to this record
 

 
Author Peeters, F.M.; Wu, X.; Devreese, J.T.; Langerak, C.J.G.M.; Singleton, J.; Barnes, D.J.; Nicholas, R.J. doi  openurl
  Title Carrier-concentration-dependent polaron cyclotron resonance in GaAs-heterostructures Type A1 Journal article
  Year 1992 Publication Physical review: B Abbreviated Journal Phys Rev B  
  Volume 45 Issue Pages 4296-4300  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992HF82800041 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 46 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:2890 Serial 283  
Permanent link to this record
 

 
Author Nicholas, R.J.; Watts, M.; Howell, D.F.; Peeters, F.M.; Wu, X.G.; Devreese, J.T.; van Bockstal, L.; Herlach, F.; Langerak, C.J.G.M.; Singleton, J.; Chevy, A. doi  openurl
  Title Cyclotron resonance of both magnetopolaron branches for polar and neutral optic phonon coupling in the layer compound InSe Type A1 Journal article
  Year 1992 Publication Pysical review: B Abbreviated Journal Phys Rev B  
  Volume 45 Issue Pages 12144  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992HV74700089 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 21 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:2906 Serial 603  
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A. doi  openurl
  Title Tuning of exciton type by environmental screening Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 11 Pages 115303-115308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077758300002 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200356 Serial 9110  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title Controlling the hybridization gap and transport in a thin-film topological insulator : effect of strain, and electric and magnetic field Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 3 Pages 035119-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a thin-film topological insulator (TI), the edge states on two surfaces may couple by quantum tunneling, opening a gap known as the hybridization gap. Controlling the hybridization gap and transport has a variety of potential uses in photodetection and energy-harvesting applications. In this paper, we report the effect of strain, and electric and magnetic field, on the hybridization gap and transport in a thin Bi2Se3 film, investigated within the tight-binding theoretical framework. We demonstrate that vertical compression decreases the hybridization gap, as does tensile in-plane strain. Applying an electric field breaks the inversion symmetry and leads to a Rashba-like spin splitting proportional to the electric field, hence closing and reopening the gap. The influence of a magnetic field on thin-film TI is also discussed, starting from the role of an out-of-plane magnetic field on quantum Hall states. We further demonstrate that the hybridization gap can be controlled by an in-plane magnetic field, and that by applying a sufficiently strong field a quantum phase transition from an insulator to a semimetal can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000832277500001 Publication Date 2022-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:189515 Serial 7140  
Permanent link to this record
 

 
Author Wang, J.; Van Pottelberge, R.; Zhao, W.-S.; Peeters, F.M. doi  openurl
  Title Coulomb impurity on a Dice lattice : atomic collapse and bound states Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 3 Pages 035427  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The modification of the quantum states in a Dice lattice due to a Coulomb impurity are investigated. The energy-band structure of a pristine Dice lattice consists of a Dirac cone and a flat band at the Dirac point. We use the tight-binding formalism and find that the flat band states transform into a set of discrete bound states whose electron density is localized on a ring around the impurity mainly on two of the three sublattices. Its energy is proportional to the strength of the Coulomb impurity. Beyond a critical strength of the Coulomb potential atomic collapse states appear that have some similarity with those found in graphene with the difference that the flat band states contribute with an additional ringlike electron density that is spatially decoupled from the atomic collapse part. At large value of the strength of the Coulomb impurity the flat band bound states anticross with the atomic collapse states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000749375200002 Publication Date 2022-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:186387 Serial 6977  
Permanent link to this record
 

 
Author Yu, Y.; Chen, X.; Liu, X.; Li, J.; Sanyal, B.; Kong, X.; Peeters, F.M.; Li, L. doi  openurl
  Title Ferromagnetism with in-plane magnetization, Dirac spin-gapless semiconducting properties, and tunable topological states in two-dimensional rare-earth metal dinitrides Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 2 Pages 024407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Since the successful synthesis of bulk single crystals MoN2 and ReN2, which have a layered structure, transition-metal dinitrides have attracted considerable attention in recent years. Here, we focus on rare-earth metal (Rem) elements, and propose seven stable Rem dinitride monolayers with a 1T structure, namely, 1T-RemN2. We use first-principles calculations, and find that these monolayers have a ferromagnetic ground state with in-plane magnetization. Without spin-orbit coupling (SOC), the band structures are spin-polarized with Dirac points at the Fermi level. Remarkably, the 1T-LuN2 monolayer exhibits an isotropic magnetocrystalline anisotropy energy in the xy plane with in-plane magnetization, indicating easy tunability of the magnetization direction. When rotating the magnetization vector in the xy plane, we propose a model that accurately describes the variation of the SOC band gap and the two possible topological states (Weyl-like semimetal and Chern insulator states) whose properties are tunable. The Weyl-like semimetal state is a critical point between the two Chern insulator states with opposite sign of the Chern numbers (+/- 1). The nontrivial band gap (up to 60.3 meV) and the Weyl-like semimetal state are promising for applications in spintronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000742384700001 Publication Date 2022-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 4 Open Access Not_Open_Access: Available from 06.07.2202  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:186514 Serial 6991  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Mogulkoc, Y.; Akgenc, B.; Mogulkoc, A.; Peeters, F.M. doi  openurl
  Title Prediction of monoclinic single-layer Janus Ga₂ Te X (X = S and Se) : strong in-plane anisotropy Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 4 Pages 045425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using density functional theory (DFT) based first-principles calculations, electronic, vibrational, piezo-electric, and optical properties of monoclinic Janus single-layer Ga2TeX (X = S or Se) are investigated. The dynamical, mechanical, and thermal stability of the proposed Janus single layers are verified by means of phonon bands, stiffness tensor, and quantum molecular dynamics simulations. The calculated vibrational spectrum reveals the either pure or coupled optical phonon branches arising from Ga-Te and Ga-X atoms. In addition to the in-plane anisotropy, single-layer Janus Ga2TeX exhibits additional out-of-plane asymmetry, which leads to important consequences for its electronic and optical properties. Electronic band dispersions indicate the direct band-gap semiconducting nature of the constructed Janus structures with energy band gaps falling into visible spectrum. Moreover, while orientation-dependent linear-elastic properties of Janus single layers indicate their strong anisotropy, the calculated in-plane stiffness values reveal the ultrasoft nature of the structures. In addition, predicted piezoelectric coefficients show that while there is a strong in-plane anisotropy between piezoelectric constants along armchair (AC) and zigzag (ZZ) directions, there exists a tiny polarization along the out-of-plane direction as a result of the formation of Janus structure. The optical response to electromagnetic radiation has been also analyzed through density functional theory by considering the independent-particle approximation. Finally, the optical spectra of Janus Ga2TeX structures is investigated and it showed a shift from the ultraviolet region to the visible region. The fact that the spectrum is between these regions will allow it to be used in solar energy and many nanoelectronics applications. The predicted monoclinic single-layer Janus Ga2TeX are relevant for promising applications in optoelectronics, optical dichroism, and anisotropic nanoelasticity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000678811100007 Publication Date 2021-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:180404 Serial 7013  
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Flexoelectricity and transport properties of phosphorene nanoribbons under mechanical bending Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 23 Pages 235406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We examine from first principles the flexoelectric properties of phosphorene nanoribbons under mechanical bending along armchair and zigzag directions. In both cases we find that the radial polarization depends linearly on the strain gradient. The flexoelectricity along the armchair direction is over 40% larger than along the zigzag direction. The obtained flexoelectric coefficients of phosphorene are four orders of magnitude larger than those of graphene and comparable to transition metal dichalcogenides. Analysis of charge density shows that the flexoelectricity mainly arises from the pz orbitals of phosphorus atoms. The electron mobilities in bent phosphorene can be enhanced by over 60% along the armchair direction, which is significantly higher than previous reports of mobility tuned by uniaxial strain. Our results indicate phosphorene is a candidate for a two-dimensional material applicable in flexible-electronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000657129800006 Publication Date 2021-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:179109 Serial 6996  
Permanent link to this record
 

 
Author Varjovi, M.J.; Yagmurcukardes, M.; Peeters, F.M.; Durgun, E. doi  openurl
  Title Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X = S, Se, and Te Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 19 Pages 195438  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural symmetry breaking in two-dimensional materials can lead to superior physical properties and introduce an additional degree of piezoelectricity. In the present paper, we propose three structural phases (1H, 1T, and 1T') of Janus WXO (X = S, Se, and Te) monolayers and investigate their vibrational, thermal, elastic, piezoelectric, and electronic properties by using first-principles methods. Phonon spectra analysis reveals that while the 1H phase is dynamically stable, the 1T phase exhibits imaginary frequencies and transforms to the distorted 1T' phase. Ab initio molecular dynamics simulations confirm that 1H- and 1T'-WXO monolayers are thermally stable even at high temperatures without any significant structural deformations. Different from binary systems, additional Raman active modes appear upon the formation of Janus monolayers. Although the mechanical properties of 1H-WXO are found to be isotropic, they are orientation dependent for 1T'-WXO. It is also shown that 1H-WXO monolayers are indirect band-gap semiconductors and the band gap narrows down the chalcogen group. Except 1T'-WSO, 1T'-WXO monolayers have a narrow band gap correlated with the Peierls distortion. The effect of spin-orbit coupling on the band structure is also examined for both phases and the alteration in the band gap is estimated. The versatile mechanical and electronic properties of Janus WXO monolayers together with their large piezoelectric response imply that these systems are interesting for several nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655902600004 Publication Date 2021-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 48 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:179050 Serial 7000  
Permanent link to this record
 

 
Author Ceyhan, E.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H. doi  openurl
  Title Electronic and magnetic properties of single-layer FeCl₂ with defects Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 1 Pages 014106  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The formation of lattice defects and their effect on the electronic properties of single-layer FeCl2 are investigated by means of first-principles calculations. Among the vacancy defects, namely mono-, di-, and three-Cl vacancies and mono-Fe vacancy, the formation of mono-Cl vacancy is the most preferable. Comparison of two different antisite defects reveals that the formation of the Fe-antisite defect is energetically preferable to the Cl-antisite defect. While a single Cl vacancy leads to a 1 mu(B) decrease in the total magnetic moment of the host lattice, each Fe vacant site reduces the magnetic moment by 4 mu(B). However, adsorption of an excess Cl atom on the surface changes the electronic structure to a ferromagnetic metal or to a ferromagnetic semiconductor depending on the adsorption site without changing the ferromagnetic state of the host lattice. Both Cl-antisite and Fe-antisite defected domains change the magnetic moment of the host lattice by -1 mu(B) and +3 mu(B), respectively. The electronic ground state of defected structures reveals that (i) single-layer FeCl2 exhibits half-metallicity under the formation of vacancy and Cl-antisite defects; (ii) ferromagnetic metallicity is obtained when a single Cl atom is adsorbed on upper-Cl and Fe sites, respectively; and (iii) ferromagnetic semiconducting behavior is found when a Cl atom is adsorbed on a lower-Cl site or a Fe-antisite defect is formed. Simulated scanning electron microscope images show that atomic-scale identification of defect types is possible from their electronic charge density. Further investigation of the periodically Fe-defected structures reveals that the formation of the single-layer FeCl3 phase, which is a dynamically stable antiferromagnetic semiconductor, is possible. Our comprehensive analysis on defects in single-layer FeCl2 will complement forthcoming experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000606969400002 Publication Date 2021-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access Not_Open_Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and by Flemish Supercomputer Center (VSC). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. M.Y. was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176039 Serial 6689  
Permanent link to this record
 

 
Author Tao, Z.H.; Dong, H.M.; Milošević, M.V.; Peeters, F.M.; Van Duppen, B. doi  openurl
  Title Tailoring dirac plasmons via anisotropic dielectric environment by design Type A1 Journal article
  Year 2021 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 16 Issue 5 Pages 054030  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dirac plasmons in a two-dimensional (2D) crystal are strongly affected by the dielectric properties of the environment, due to interaction of their electric field lines with the surrounding medium. Using graphene as a 2D reservoir of free carriers, one can engineer a material configuration that provides an anisotropic environment to the plasmons. In this work, we discuss the physical properties of Dirac plasmons in graphene surrounded by an arbitrary anisotropic dielectric and exemplify how h-BN-based heterostructures can be designed to bear the required anisotropic characteristics. We calculate how dielec-tric anisotropy impacts the spatial propagation of the plasmons and find that an anisotropy-induced plasmon mode emerges, together with a damping pathway, that stem from the out-of-plane off-diagonal elements in the dielectric tensor. Furthermore, we find that one can create hyperbolic plasmons by inher-iting the dielectric hyperbolicity of the designed material environment. Strong control over plasmon propagation patterns can be realized in a similar manner. Finally, we show that in this way one can also control the polarization of the light-matter excitations that constitute the plasmon. Taken together, our results promote the design of the dielectric environment as an effective path to tailor the plasmonic response of graphene on the nanoscopic level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000720372500002 Publication Date 2021-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.808 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.808  
  Call Number UA @ admin @ c:irua:184063 Serial 7028  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M. pdf  doi
openurl 
  Title Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines Type A1 Journal article
  Year 2010 Publication Philosophical transactions of the Royal Society : mathematical, physical and engineering sciences Abbreviated Journal Philos T R Soc A  
  Volume 368 Issue 1932 Pages 5499-5524  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We review the energy spectrum and transport properties of several types of one-dimensional superlattices (SLs) on single-layer and bilayer graphene. In single-layer graphene, for certain SL parameters an electron beam incident on an SL is highly collimated. On the other hand, there are extra Dirac points generated for other SL parameters. Using rectangular barriers allows us to find analytical expressions for the location of new Dirac points in the spectrum and for the renormalization of the electron velocities. The influence of these extra Dirac points on the conductivity is investigated. In the limit of δ-function barriers, the transmission T through and conductance G of a finite number of barriers as well as the energy spectra of SLs are periodic functions of the dimensionless strength P of the barriers, Graphic, with vF the Fermi velocity. For a KronigPenney SL with alternating sign of the height of the barriers, the Dirac point becomes a Dirac line for P = π/2+nπ with n an integer. In bilayer graphene, with an appropriate bias applied to the barriers and wells, we show that several new types of SLs are produced and two of them are similar to type I and type II semiconductor SLs. Similar to single-layer graphene SLs, extra Dirac points are found in bilayer graphene SLs. Non-ballistic transport is also considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000283660000011 Publication Date 2010-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-503X;1471-2962; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.97 Times cited 64 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the Canadian NSERC through grant no. OGP0121756. ; Approved Most recent IF: 2.97; 2010 IF: 2.459  
  Call Number UA @ lucian @ c:irua:85597 Serial 3023  
Permanent link to this record
 

 
Author Szaszko-Bogar, V.; Foeldi, P.; Peeters, F.M. doi  openurl
  Title Oscillating spin-orbit interaction as a source of spin-polarized wavepackets in two-terminal nanoscale devices Type A1 Journal article
  Year 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 26 Issue 13 Pages 135302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ballistic transport through nanoscale devices with time-dependent Rashba-type spin- orbit interaction (SOI) can lead to spin-polarized wavepackets that appear even for completely unpolarized input. The SOI that oscillates in a finite domain generates density and spin polarization fluctuations that leave the region as propagating waves. In particular, spin polarization has space and time dependence even in regions without SOI. Our results are based on an analytical solution of the time-dependent Schrodinger equation. The relevant Floquet quasi-energies that are obtained appear in the energy spectrum of both the transmitted and the reflected waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited Open Access  
  Notes Approved Most recent IF: 2.649; 2014 IF: 2.346  
  Call Number UA @ lucian @ c:irua:116844 Serial 2533  
Permanent link to this record
 

 
Author Pandey, T.; Peeters, F.M.; Milošević, M.V. pdf  doi
openurl 
  Title Pivotal role of magnetic ordering and strain in lattice thermal conductivity of chromium-trihalide monolayers Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue 1 Pages 015034  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Understanding the coupling between spin and phonons is critical for controlling the lattice thermal conductivity (kappa ( l )) in magnetic materials, as we demonstrate here for CrX3 (X = Br and I) monolayers. We show that these compounds exhibit large spin-phonon coupling (SPC), dominated by out-of-plane vibrations of Cr atoms, resulting in significantly different phonon dispersions in ferromagnetic (FM) and paramagnetic (PM) phases. Lattice thermal conductivity calculations provide additional evidence for strong SPC, where particularly large kappa ( l ) is found for the FM phase. Most strikingly, PM and FM phases exhibit radically different behavior with tensile strain, where kappa ( l ) increases with strain for the PM phase, and strongly decreases for the FM phase-as we explain through analysis of phonon lifetimes and scattering rates. Taken all together, we uncover the high significance of SPC on the phonon transport in CrX3 monolayers, a result extendable to other 2D magnetic materials, that will be useful in further design of thermal spin devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000735170300001 Publication Date 2021-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 5.5  
  Call Number UA @ admin @ c:irua:184642 Serial 7010  
Permanent link to this record
 

 
Author Bacaksiz, C.; Yagmurcukardes, M.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title Hematite at its thinnest limit Type A1 Journal article
  Year 2020 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 7 Issue 2 Pages 025029  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of two-dimensional alpha-Fe2O3 (Balan et al 2018 Nat. Nanotechnol. 13 602), we analyze the structural, vibrational, electronic and magnetic properties of single- and few-layer alpha-Fe2O3 compared to bulk, by ab initio and Monte-Carlo simulations. We reveal how monolayer alpha-Fe2O3 (hematene) can be distinguished from the few-layer structures, and how they all differ from bulk through observable Raman spectra. The optical spectra exhibit gradual shift of the prominent peak to higher energy, as well as additional features at lower energy when alpha-Fe2O3 is thinned down to a monolayer. Both optical and electronic properties have strong spin asymmetry, meaning that lower-energy optical and electronic activities are allowed for the single-spin state. Finally, our considerations of magnetic properties reveal that 2D hematite has anti-ferromagnetic ground state for all thicknesses, but the critical temperature for Morin transition increases with decreasing sample thickness. On all accounts, the link to available experimental data is made, and further measurements are prompted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537341000002 Publication Date 2020-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 11 Open Access  
  Notes ; This work was supported by Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by Flemish Supercomputer Center(VSC), and TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). Part of this work was also supported by FLAG-ERA project TRANS-2D-TMD and TOPBOF-UAntwerp. MY was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 5.5; 2020 IF: 6.937  
  Call Number UA @ admin @ c:irua:170301 Serial 6533  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Moldovan, D.; Milovanović, S.P.; Peeters, F.M. pdf  doi
openurl 
  Title Molecular collapse in monolayer graphene Type A1 Journal article
  Year 2019 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 6 Issue 4 Pages 045047  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomic collapse is a phenomenon inherent to relativistic quantum mechanics where electron states dive in the positron continuum for highly charged nuclei. This phenomenon was recently observed in graphene. Here we investigate a novel collapse phenomenon when multiple sub- and supercritical charges of equal strength are put close together as in a molecule. We construct a phase diagram which consists of three distinct regions: (1) subcritical, (2) frustrated atomic collapse, and (3) molecular collapse. We show that the single impurity atomic collapse resonances rearrange themselves to form molecular collapse resonances which exhibit a distinct bonding, anti-bonding and non-bonding character. Here we limit ourselves to systems consisting of two and three charges. We show that by tuning the distance between the charges and their strength a high degree of control over the molecular collapse resonances can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487692200003 Publication Date 2019-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 6 Open Access  
  Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research Grant for RVP and a postdoctoral Grant for SPM. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:163756 Serial 5422  
Permanent link to this record
 

 
Author Sevik, C.; Wallbank, J.R.; Gulseren, O.; Peeters, F.M.; Çakir, D. pdf  doi
openurl 
  Title Gate induced monolayer behavior in twisted bilayer black phosphorus Type A1 Journal article
  Year 2017 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 4 Issue 3 Pages 035025  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90 degrees. These calculations are complemented with a simple (k) over right arrow . (p) over right arrow model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90 degrees twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90 degrees simply by changing the direction of the applied electric field. In particular, a +0.4 (-0.4) V angstrom(1) out-of-plane electric field results in a similar to 60% increase in the hole effective mass along the y (x) axis and enhances the m(y)*/m(x)* (m(x)*/m(y)*) ratio as much as by a factor of 40. Our DFT and (k) over right arrow . (p) over right arrow simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000406926600001 Publication Date 2017-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 13 Open Access  
  Notes ; This work was supported by the bilateral project between the The Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from TUBITAK (Grant No. 115F024), ERC Synergy grant Hetero2D and the EU Graphene Flagship Project. We also thank Vladimir Fal'ko for helpful discussions. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:145151 Serial 4717  
Permanent link to this record
 

 
Author Peymanirad, F.; Singh, S.K.; Ghorbanfekr-Kalashami, H.; Novoselov, K.S.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title Thermal activated rotation of graphene flake on graphene Type A1 Journal article
  Year 2017 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 4 Issue 2 Pages 025015  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The self rotation of a graphene flake over graphite is controlled by the size, initial misalignment and temperature. Using both ab initio calculations and molecular dynamics simulations, we investigate annealing effects on the self rotation of a graphene flake on a graphene substrate. The energy barriers for rotation and drift of a graphene flake over graphene is found to be smaller than 25 meV/atom which is comparable to thermal energy. We found that small flakes (of about similar to 4 nm) are more sensitive to temperature and initial misorientation angles than larger one (beyond 10 nm). The initial stacking configuration of the flake is found to be important for its dynamics and time evolution of misalignment. Large flakes, which are initially in the AA-or AB-stacking state with small misorientation angle, rotate and end up in the AB-stacking configuration. However small flakes can they stay in an incommensurate state specially when the initial misorientation angle is larger than 2 degrees. Our results are in agreement with recent experiments.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000424399600005 Publication Date 2017-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 16 Open Access  
  Notes ; We would like to acknowledge Annalisa Fasolino and MM van Wijk for providing us with the implemented parameters of REBO-KC [5] in LAMMPS. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:149364 Serial 4984  
Permanent link to this record
 

 
Author Zebrowski, D.P.; Peeters, F.M.; Szafran, B. pdf  doi
openurl 
  Title Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots Type A1 Journal article
  Year 2017 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 32 Issue 6 Pages 065016  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000402405800007 Publication Date 2017-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.305 Times cited Open Access  
  Notes ; This work was supported by the National Science Centre according to decision DEC-2013/11/B/ST3/03837 and by the Flemish Science Foundation (FWO-VL). ; Approved Most recent IF: 2.305  
  Call Number UA @ lucian @ c:irua:144238 Serial 4646  
Permanent link to this record
 

 
Author Zhang, R.; Wu, Z.; Li, X.J.; Li, L.L.; Chen, Q.; Li, Y.-M.; Peeters, F.M. pdf  doi
openurl 
  Title Fano resonances in bilayer phosphorene nanoring Type A1 Journal article
  Year 2018 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 29 Issue 21 Pages 215202  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov-Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000428920200001 Publication Date 2018-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 4 Open Access  
  Notes ; This work was supported by Grant No. 2017YFA0303400 from the National Key R&D Program of China, the Flemish Science Foundation, the grants No. 2016YFE0110000, No. 2015CB921503, and No. 2016YFA0202300 from the MOST of China, the NSFC (Grants Nos. 11504366, 11434010, 61674145 and 61774168) and CAS (Grants No. QYZDJ-SSW-SYS001). ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:150713UA @ admin @ c:irua:150713 Serial 4968  
Permanent link to this record
 

 
Author Petrovic, M.D.; Milovanović, S.P.; Peeters, F.M. pdf  doi
openurl 
  Title Scanning gate microscopy of magnetic focusing in graphene devices : quantum versus classical simulation Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 28 Issue 28 Pages 185202  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We compare classical versus quantum electron transport in recently investigated magnetic focusing devices (Bhandari et al 2016 Nano Lett. 16 1690) exposed to the perturbing potential of a scanning gate microscope (SGM). Using the Landauer-Buttiker formalism for a multi-terminal device, we calculate resistance maps that are obtained as the SGM tip is scanned over the sample. There are three unique regimes in which the scanning tip can operate (focusing, repelling, and mixed regime) which are investigated. Tip interacts mostly with electrons with cyclotron trajectories passing directly underneath it, leaving a trail of modified current density behind it. Other (indirect) trajectories become relevant when the tip is placed near the edges of the sample, and current is scattered between the tip and the edge. We point out that, in contrast to SGM experiments on gapped semiconductors, the STM tip can induce a pn junction in graphene, which improves contrast and resolution in SGM. We also discuss possible explanations for spatial asymmetry of experimentally measured resistance maps, and connect it with specific configurations of the measuring probes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000399273800001 Publication Date 2017-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 7 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:143639 Serial 4607  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: