toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Kenawy, A.; Magnus, W.; Sorée, B. doi  openurl
  Title Flux quantization and Aharonov-Bohm effect in superconducting rings Type A1 Journal article
  Year 2018 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 31 Issue 5 Pages 1351-1357  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superconductivity is a macroscopic coherent state exhibiting various quantum phenomena such as magnetic flux quantization. When a superconducting ring is placed in a magnetic field, a current flows to expel the field from the ring and to ensure that the enclosed flux is an integer multiple of h/(2|e|). Although the quantization of magnetic flux in ring structures is extensively studied in literature, the applied magnetic field is typically assumed to be homogeneous, implicitly implying an interplay between field expulsion and flux quantization. Here, we propose to decouple these two effects by employing an Aharonov-Bohm-like structure where the superconducting ring is threaded by a magnetic core (to which the applied field is confined). Although the magnetic field vanishes inside the ring, the formation of vortices takes place, corresponding to a change in the flux state of the ring. The time evolution of the density of superconducting electrons is studied using the time-dependent Ginzburg-Landau equations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000429354100010 Publication Date 2017-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.18 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:150742UA @ admin @ c:irua:150742 Serial 4969  
Permanent link to this record
 

 
Author Cariglia, M.; Vargas-Paredes, A.; Doria, M.M.; Bianconi, A.; Milošević, M.V.; Perali, A. doi  openurl
  Title Shape-Resonant Superconductivity in Nanofilms: from Weak to Strong Coupling Type A1 Journal article
  Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 29 Issue 29 Pages 3081-3086  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ultrathin superconductors of different materials are becoming a powerful platform to find mechanisms for enhancement of superconductivity, exploiting shape resonances in different superconducting properties. Here, we evaluate the superconducting gap and its spatial profile, the multiple gap components, and the chemical potential, of generic superconducting nanofilms, considering the pairing attraction and its energy scale as tunable parameters, from weak to strong coupling, at fixed electron density. Superconducting properties are evaluated at mean field level as a function of the thickness of the nanofilm, in order to characterize the shape resonances in the superconducting gap. We find that the most pronounced shape resonances are generated for weakly coupled superconductors, while approaching the strong coupling regime the shape resonances are rounded by a mixing of the subbands due to the large energy gaps extending over large energy scales. Finally, we find that the spatial profile, transverse to the nanofilm, of the superconducting gap acquires a flat behavior in the shape resonance region, indicating that a robust and uniform multigap superconducting state can arise at resonance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000390030600016 Publication Date 2016-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.18 Times cited 11 Open Access  
  Notes ; We acknowledge D. Valentinis, D. Van der Marel, and C. Berthod for useful discussions. A. Ricci is also acknowledged for his comments on the experimental detection of the predictions of this paper. A. Bianconi acknowledges financial support from Superstripes non-profit organization. M. Cariglia acknowledges CNPq support from project (205029 / 2014-0) and FAPEMIG support from project APQ-02164-14. M.M. Doria acknowledges CNPq support from funding (23079.014992 / 2015-39). M.V. Milosevic acknowledges support from Research Foundation – Flanders (FWO). A. Perali acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. All authors acknowledge the collaboration within the MultiSuper Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:140347 Serial 4461  
Permanent link to this record
 

 
Author Guidini, A.; Flammia, L.; Milošević, M.V.; Perali, A. pdf  doi
openurl 
  Title BCS-BEC crossover in quantum confined superconductors Type A1 Journal article
  Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 29 Issue 29 Pages 711-715  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ultranarrow superconductors are in the strong quantum confinement regime with formation of multiple coherent condensates associated with the many subbands of the electronic structure. Here, we analyze the multiband BCS-BEC crossover induced by the chemical potential tuned close to a subband bottom, in correspondence of a superconducting shape resonance. The evolution of the condensate fraction and of the pair correlation length in the ground state as functions of the chemical potential demonstrates the tunability of the BCS-BEC crossover for the condensate component of the selected subband. The extension of the crossover regime increases when the pairing strength and/or the characteristic energy of the interaction get larger. Our results indicate the coexistence of large and small Cooper pairs in the crossover regime, leading to the optimal parameter configuration for high transition temperature superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000371089500034 Publication Date 2015-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.18 Times cited 12 Open Access  
  Notes ; We acknowledge A. Bianconi and A.A. Shanenko for useful discussions. A.P. acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. M.V.M. acknowledges support from the Research Foundation – Flanders (FWO) and the Special Research Funds of the University of Antwerp (BOF-UA). A.P. and M.V.M. acknowledge the collaboration within the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:132287 Serial 4143  
Permanent link to this record
 

 
Author Croitoru, M.D.; Buzdin, A.I. pdf  doi
openurl 
  Title FFLO-wave-vector lock-in effect in quasi-1D superconductors Type A1 Journal article
  Year 2015 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 28 Issue 28 Pages 1305-1308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the phase transition into the Fulde-Ferrell-Larkin-Ovchinnikov state in high magnetic field in quasi-one dimensional superconductors within the quasi-classical formalism, taking into account the interchain Josephson coupling and the paramagnetic spin splitting. We show that anomalies in the field-direction dependence of the upper critical field when the magnetic field length equals to the FFLO period, previously described in [29], are characterized by the lock-in effect of the FFLO modulation wave vector, which is governed by the magnetic length.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000352085700019 Publication Date 2014-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939;1557-1947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.18 Times cited 4 Open Access  
  Notes ; We thank D. Jerome for useful discussions. We acknowledge the support by the French ANR program “ElectroVortex” and European NanoSC COST Action MP1201. M.D.C. acknowledges the support by the BELSPO Return to Belgium Grant. ; Approved Most recent IF: 1.18; 2015 IF: 0.909  
  Call Number c:irua:125540 Serial 1187  
Permanent link to this record
 

 
Author Karapetrov, G.; Belkin, A.; Iavarone, M.; Fedor, J.; Novosad, V.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Anisotropic superconductivity and vortex dynamics in magnetically coupled F/S and F/S/F hybrids Type A1 Journal article
  Year 2011 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 24 Issue 1/2 Pages 905-910  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetically coupled superconductorferromagnet hybrids offer advanced routes for nanoscale control of superconductivity. Magnetotransport characteristics and scanning tunneling microscopy images of vortex structures in superconductorferromagnet hybrids reveal rich superconducting phase diagrams. Focusing on a particular combination of a ferromagnet with a well-ordered periodic magnetic domain structure with alternating out-of-plane component of magnetization, and a small coherence length superconductor, we find directed nucleation of superconductivity above the domain wall boundaries. We show that near the superconductor-normal state phase boundary the superconductivity is localized in narrow mesoscopic channels. In order to explore the Abrikosov flux line ordering in F/S hybrids, we use a combination of scanning tunneling microscopy and GinzburgLandau simulations. The magnetic stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinninganti-pinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-1D arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. In F/S/F hybrids we demonstrate the evolution of the anisotropic conductivity in the superconductor that is magnetically coupled with two adjacent ferromagnetic layers. Stripe magnetic domain structures in both F-layers are aligned under each other, resulting in a directional superconducting order parameter in the superconducting layer. The conductance anisotropy strongly depends on the period of the magnetic domains and the strength of the local magnetization. The anisotropic conductivity of up to three orders of magnitude can be achieved with a spatial critical temperature modulation of 5% of T c. Induced anisotropic properties in the F/S and F/S/F hybrids have a potential for future application in switching and nonvolatile memory elements operating at low temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000289855700150 Publication Date 2010-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939;1557-1947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.18 Times cited 2 Open Access  
  Notes ; This work as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory were supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work was also supported by the Ministry of Education, Agency for Structural Funds of the European Union, Research and Development Program, under agreement 262 401 200 19. M.V.M. and F. M. P. acknowledge support from the Flemish Science Foundation (FWO-VI), the Belgian Science Policy, the JSPS/ESF-NES program, the ESF-AQDJJ network, and the Vlaanderen-USA bilateral program. ; Approved Most recent IF: 1.18; 2011 IF: 0.650  
  Call Number UA @ lucian @ c:irua:89930 Serial 130  
Permanent link to this record
 

 
Author Dantas, D.S.; Chaves, A.; Farias, G.A.; Ramos, A.C.A.; Peeters, F.M. pdf  doi
openurl 
  Title Low-dimensional confining structures on the surface of helium films suspended on designed cavities Type A1 Journal article
  Year 2013 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 173 Issue 3-4 Pages 207-226  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the formation of quantum confined structures on the surface of a liquid helium film suspended on a nanostructured substrate. We show theoretically that, by nanostructuring the substrate, it is possible to change the geometry of the liquid helium surface, opening the possibility of designing and controlling the formation of valleys with different shapes. By applying an external electric field perpendicular to the substrate plane, surface electrons can be trapped into these valleys, as in a quantum dot. We investigate how the external parameters, such as the electric field strength and the height of the liquid helium bath, can be tuned to control the energy spectrum of the trapped surface electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000324820300008 Publication Date 2013-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited 1 Open Access  
  Notes ; This work has received financial support from the Brazilian National Research Council (CNPq), Fundacao Cearense de Apoio ao Desenvolvimento Cientifico e Tecnologico (Funcap), CAPES and Pronex/CNPq/Funcap. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the bilateral project between CNPq and FWO-Vl. ; Approved Most recent IF: 1.3; 2013 IF: 1.036  
  Call Number UA @ lucian @ c:irua:111140 Serial 1845  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Vortex-antivortex lattices in superconducting films with magnetic pinning arrays Type A1 Journal article
  Year 2005 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 139 Issue 1 Pages 257-272  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos Publication Date 2005-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited 12 Open Access  
  Notes Approved Most recent IF: 1.3; 2005 IF: 0.753  
  Call Number UA @ lucian @ c:irua:57245 Serial 3853  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title The structure and manipulation of vortex states in a superconducting square with 2 × 2 blind holes Type A1 Journal article
  Year 2005 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 139 Issue 1 Pages 229-238  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000228853900021 Publication Date 2005-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.3; 2005 IF: 0.753  
  Call Number UA @ lucian @ c:irua:57246 Serial 3284  
Permanent link to this record
 

 
Author Masir, M.R.; Peeters, F.M. doi  openurl
  Title Scattering of Dirac electrons by a random array of magnetic flux tubes Type A1 Journal article
  Year 2013 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 12 Issue 2 Pages 115-122  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The scattering of two-dimensional (2D) massless electrons as presented in graphene in the presence of a random array of circular magnetic flux tubes is investigated. The momentum relaxation time and the Hall factor are obtained using optical theorem techniques for scattering. Electrons with energy close to those of the Landau levels of the flux tubes exhibit resonant scattering and have a long life-time to reside inside the magnetic flux tube. These resonances appear as sharp structures in the Hall factor and the magneto-resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000320044900007 Publication Date 2013-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 2 Open Access  
  Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN and the Flemish Science Foundation (FWO-Vl). We acknowledge fruitful discussions with A. Matulis. ; Approved Most recent IF: 1.526; 2013 IF: 1.372  
  Call Number UA @ lucian @ c:irua:109615 Serial 2950  
Permanent link to this record
 

 
Author Sels, D.; Sorée, B.; Groeseneken, G. doi  openurl
  Title Quantum ballistic transport in the junctionless nanowire pinch-off field effect transistor Type A1 Journal article
  Year 2011 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 10 Issue 1 Pages 216-221  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract In this work we investigate quantum ballistic transport in ultrasmall junctionless and inversion mode semiconducting nanowire transistors within the framework of the self-consistent Schrödinger-Poisson problem. The quantum transmitting boundary method is used to generate open boundary conditions between the active region and the electron reservoirs. We adopt a subband decomposition approach to make the problem numerically tractable and make a comparison of four different numerical approaches to solve the self-consistent Schrödinger-Poisson problem. Finally we discuss the IV-characteristics for small (r≤5 nm) GaAs nanowire transistors. The novel junctionless pinch-off FET or junctionless nanowire transistor is extensively compared with the gate-all-around (GAA) nanowire MOSFET.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000300735800021 Publication Date 2011-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 12 Open Access  
  Notes ; ; Approved Most recent IF: 1.526; 2011 IF: 1.211  
  Call Number UA @ lucian @ c:irua:89501 Serial 2772  
Permanent link to this record
 

 
Author Magnus, W.; Brosens, F.; Sorée, B. doi  openurl
  Title Modeling drive currents and leakage currents : a dynamic approach Type A1 Journal article
  Year 2009 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 8 Issue 3/4 Pages 307-323  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract The dynamics of electrons and holes propagating through the nano-scaled channels of modern semiconductor devices can be seen as a widespread manifestation of non-equilibrium statistical physics and its ruling principles. In this respect both the devices that are pushing conventional CMOS technology towards the final frontiers of Moores law and the upcoming set of alternative, novel nanostructures grounded on entirely new concepts and working principles, provide an almost unlimited playground for assessing physical models and numerical techniques emerging from classical and quantum mechanical non-equilibrium theory. In this paper we revisit the Boltzmann as well as the WignerBoltzmann equation which offers a valuable platform to study transport of charge carriers taking part in drive currents. We focus on a numerical procedure that regained attention recently as an alternative tool to solve the time-dependent Boltzmann equation for inhomogeneous systems, such as the channel regions of field-effect transistors, and we discuss its extension to the WignerBoltzmann equation. Furthermore, we pay attention to the calculation of tunneling leakage currents. The latter typically occurs in nano-scaled transistors when part of the carrier distribution sustaining the drive current is found to tunnel into the gate due the presence of an ultra-thin insulating barrier separating the gate from the channel region. In particular, we discuss the paradox related to the very existence of leakage currents established by electrons occupying quasi-bound states, while the (real) wave functions of the latter cannot carry net currents. Finally, we describe a simple model to resolve the paradox as well as to estimate gate currents provided the local carrier generation rates largely exceed the tunneling rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208236100009 Publication Date 2009-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.526; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:89503 Serial 2110  
Permanent link to this record
 

 
Author Pourghaderi, M.A.; Magnus, W.; Sorée, B.; de Meyer, K.; Meuris, M.; Heyns, M. doi  openurl
  Title General 2D Schrödinger-Poisson solver with open boundary conditions for nano-scale CMOS transistors Type A1 Journal article
  Year 2008 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 7 Issue 4 Pages 475-484  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Employing the quantum transmitting boundary (QTB) method, we have developed a two-dimensional Schrödinger-Poisson solver in order to investigate quantum transport in nano-scale CMOS transistors subjected to open boundary conditions. In this paper we briefly describe the building blocks of the solver that was originally written to model silicon devices. Next, we explain how to extend the code to semiconducting materials such as germanium, having conduction bands with energy ellipsoids that are neither parallel nor perpendicular to the channel interfaces or even to each other. The latter introduces mixed derivatives in the 2D effective mass equation, thereby heavily complicating the implementation of open boundary conditions. We present a generalized quantum transmitting boundary method that mainly leans on the completeness of the eigenstates of the effective mass equation. Finally, we propose a new algorithm to calculate the chemical potentials of the source and drain reservoirs, taking into account their mutual interaction at high drain voltages. As an illustration, we present the potential and carrier density profiles obtained for a (111) Ge NMOS transistor as well as the ballistic current characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000209032500002 Publication Date 2008-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.526; 2008 IF: NA  
  Call Number UA @ lucian @ c:irua:89505 Serial 1322  
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W.; Pourtois, G. doi  openurl
  Title Analytical and self-consistent quantum mechanical model for a surrounding gate MOS nanowire operated in JFET mode Type A1 Journal article
  Year 2008 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 7 Issue 3 Pages 380-383  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We derive an analytical model for the electrostatics and the drive current in a silicon nanowire operating in JFET mode. We show that there exists a range of nanowire radii and doping densities for which the nanowire JFET satisfies reasonable device characteristics. For thin nanowires we have developed a self-consistent quantum mechanical model to obtain the electronic structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208473800067 Publication Date 2008-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 70 Open Access  
  Notes Approved Most recent IF: 1.526; 2008 IF: NA  
  Call Number UA @ lucian @ c:irua:89504 Serial 107  
Permanent link to this record
 

 
Author Slachmuylders, A.; Partoens, B.; Magnus, W.; Peeters, F.M. doi  openurl
  Title The effect of dielectric mismatch on excitons and trions in cylindrical semiconductor nanowires Type A1 Journal article
  Year 2008 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume Issue Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208473800066 Publication Date 2008-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 2 Open Access  
  Notes Approved Most recent IF: 1.526; 2008 IF: NA  
  Call Number UA @ lucian @ c:irua:69620 Serial 808  
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W. doi  openurl
  Title Quantized conductance without reservoirs : method of the nonequilibrium statistical operator Type A1 Journal article
  Year 2007 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 6 Issue 1/3 Pages 255-258  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We introduce a generalized non-equilibrium statistical operator (NSO) to study a current-carrying system. The NSO is used to derive a set of quantum kinetic equations based on quantum mechanical balance equations. The quantum kinetic equations are solved self-consistently together with Poissons equation to solve a general transport problem. We show that these kinetic equations can be used to rederive the Landauer formula for the conductance of a quantum point contact, without any reference to reservoirs at different chemical potentials. Instead, energy dissipation is taken into account explicitly through the electron-phonon interaction. We find that both elastic and inelastic scattering are necessary to obtain the Landauer conductance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208473600062 Publication Date 2007-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.526 Times cited Open Access  
  Notes Approved Most recent IF: 1.526; 2007 IF: NA  
  Call Number UA @ lucian @ c:irua:89506 Serial 2769  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H. doi  openurl
  Title Electric quadrupole interactions and the γ-α phase transition in Ce: the role of conduction electrons Type A1 Journal article
  Year 2000 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 17 Issue Pages 15-32  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000089339900004 Publication Date 2003-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.461; 2000 IF: 2.077  
  Call Number UA @ lucian @ c:irua:34338 Serial 888  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H. doi  openurl
  Title Quantum charge density fluctuations and the γ-α phase transition in Ce Type A1 Journal article
  Year 1999 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 9 Issue Pages 619-634  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000081615500009 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 19 Open Access  
  Notes Approved Most recent IF: 1.461; 1999 IF: 1.705  
  Call Number UA @ lucian @ c:irua:28504 Serial 2774  
Permanent link to this record
 

 
Author Peeters, F.M.; Riva, C.; Varga, K. doi  openurl
  Title Trions in quantum wells Type A1 Journal article
  Year 2002 Publication Few-body systems T2 – International Workshop on Dynamics and Structure of Critically Stable, Quantum Few-Body Systems, OCT 08-12, 2001, LES HOUCHES, FRANCE Abbreviated Journal Few-Body Syst  
  Volume 31 Issue 2-4 Pages 97-100  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The ground-state energy of three-particle systems consisting of electrons and holes as found in semiconducting quantum wells is studied. The degree of confinement is determined by the quantum-well width and we can vary the dimensionality of the system from two to three dimensions. The energy levels of the system can further be altered by the application of an external magnetic field which is directed perpendicular to the well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wien Editor  
  Language Wos 000176115900005 Publication Date 2003-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7963;1432-5411; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.877 Times cited 2 Open Access  
  Notes Approved Most recent IF: 0.877; 2002 IF: 1.773  
  Call Number UA @ lucian @ c:irua:103378 Serial 3733  
Permanent link to this record
 

 
Author Peeters, F.M.; Szafran, B.; Chwiej, T.; Bednarek, S.; Adamowski, J. doi  openurl
  Title Stability of charged exciton states in quantum wires Type A1 Journal article
  Year 2006 Publication Few-body systems Abbreviated Journal Few-Body Syst  
  Volume 38 Issue 2/4 Pages 121-124  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wien Editor  
  Language Wos 000238498200013 Publication Date 2006-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7963;1432-5411; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.877 Times cited 3 Open Access  
  Notes Approved Most recent IF: 0.877; 2006 IF: 0.765  
  Call Number UA @ lucian @ c:irua:60035 Serial 3125  
Permanent link to this record
 

 
Author Filinov, A.V.; Peeters, F.M.; Riva, C.; Lozovik, Y.E.; Bonitz, M. doi  openurl
  Title Exciton molecules in quantum wells : influence of the well width fluctuations Type A1 Journal article
  Year 2004 Publication Few-body systems T2 – 3rd International Workshop on Dynamics and Structure of Critically, Stable Quantum Few-Body Systems, SEP 01-05, 2003, Trento, ITALY Abbreviated Journal Few-Body Syst  
  Volume 34 Issue 1-3 Pages 149-154  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of the well width fluctuations on the dependence of the binding energy of excitonic complexes in quantum wells is studied by using the path-integral Monte-Carlo technique. The results are compared with available experimental data and a good agreement is found.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wien Editor  
  Language Wos 000222009500025 Publication Date 2004-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7963;1432-5411; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.877 Times cited 2 Open Access  
  Notes Approved Most recent IF: 0.877; 2004 IF: 1.948  
  Call Number UA @ lucian @ c:irua:103232 Serial 1113  
Permanent link to this record
 

 
Author Vansant, P.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T. doi  openurl
  Title Strong-coupling limit for one-dimensional polarons in a finite box Type A1 Journal article
  Year 1996 Publication Zeitschrift für Physik: B: condensed matter and quanta Abbreviated Journal  
  Volume 99 Issue Pages 345-351  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1996TW44800007 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-3277;1431-584X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:15035 Serial 3180  
Permanent link to this record
 

 
Author Michel, K.H. doi  openurl
  Title Free energy and orientational phase transition in solid C60 Type A1 Journal article
  Year 1992 Publication Zeitschrift für Physik: B Abbreviated Journal  
  Volume 88 Issue Pages 71-78  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992JB10700009 Publication Date 2005-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-3277;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 33 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:2967 Serial 1275  
Permanent link to this record
 

 
Author Theuns, T.; Michel, K.H. doi  openurl
  Title Free energy and structural phase transitions in mixed crystals: a microscopic derivation Type A1 Journal article
  Year 1992 Publication Zeitschrift für Physik: B Abbreviated Journal  
  Volume 86 Issue Pages 125-131  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992GV45100019 Publication Date 2005-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-3277;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:44748 Serial 1276  
Permanent link to this record
 

 
Author Lamoen, D.; Michel, K.H. doi  openurl
  Title Crystal field and molecular structure of solid C60 Type A1 Journal article
  Year 1993 Publication Zeitschrift für Physik : B : condensed matter Abbreviated Journal  
  Volume 92 Issue Pages 323-330  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The crystal field in the orientationally disordered phase of C90-fullerite is derived from an intermolecular potential model, which takes into account the geometric difference between double bonds and single bonds. The molecules are modelled as rigid bodies, atoms and single bonds are treated as single interaction centers, while double bonds are described by a distribution of interaction centers along the bond. The crystal field is expanded in terms of cubic rotator functions. The calculated expansion coefficients are compared with empirical values derived from diffraction data. The angular dependence of the crystal field, resulting from an anticlockwise rotation of the molecule around the [111] axis, exhibits an absolute and a secondary minimum at angles of 98-degrees and 38-degrees respectively. The self interaction of the molecule in a deformable lattice is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1993MC88000005 Publication Date 2005-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-3277;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 25 Open Access  
  Notes Approved PHYSICS, CONDENSED MATTER 11/54 Q1 #  
  Call Number UA @ lucian @ c:irua:5777 Serial 553  
Permanent link to this record
 

 
Author Milovanović, S.P.; Peeters, F.M. pdf  doi
openurl 
  Title Strained graphene structures : from valleytronics to pressure sensing Type P1 Proceeding
  Year 2018 Publication Nanostructured Materials For The Detection Of Cbrn Abbreviated Journal  
  Volume Issue Pages 3-17 T2 - NATO Advanced Research Workshop on Nanos  
  Keywords P1 Proceeding; Pharmacology. Therapy; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Due to its strong bonds graphene can stretch up to 25% of its original size without breaking. Furthermore, mechanical deformations lead to the generation of pseudo-magnetic fields (PMF) that can exceed 300 T. The generated PMF has opposite direction for electrons originating from different valleys. We show that valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by a Gaussian-like deformation allows electrons from only one valley to transmit and a current of electrons from a single valley is generated at the opposite side of the locally strained region. Furthermore, applying a pressure difference between the two sides of a graphene membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477758900001 Publication Date 2018-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-94-024-1306-9; 978-94-024-1304-5; 978-94-024-1303-8; 978-94-024-1303-8 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 6 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:161972 Serial 8583  
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M. doi  openurl
  Title Atomic Collapse in Graphene Type P1 Proceeding
  Year 2016 Publication Nanomaterials For Security Abbreviated Journal  
  Volume Issue Pages 3-17  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract When the charge Z of an atom exceeds the critical value of 170, it will undergo a process called atomic collapse which triggers the spontaneous creation of electron-positron pairs. The high charge requirements have prevented the observation of this phenomenon with real atomic nuclei. However, thanks to the relativistic nature of the carriers in graphene, the same physics is accessible at a much lower scale. The atomic collapse analogue in graphene is realized using artificial nuclei which can be created via the deposition of impurities on the surface of graphene or using charged vacancies. These supercritically charged artificial nuclei trap electrons in a sequence of quasi-bound states which can be observed experimentally as resonances in the local density of states.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Dordrecht Editor  
  Language Wos 000386506200001 Publication Date 2016-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-94-017-7593-9; 978-94-017-7591-5 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:138237 Serial 4348  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M. doi  openurl
  Title Superconducting nanowires : new type of BCS-BEC crossover driven by quantum-size effects Type P1 Proceeding
  Year 2011 Publication Abbreviated Journal  
  Volume Issue Pages 119-127  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We show that a superconducting quantum nanowire undergoes a new type of BCS-BEC crossover each time when an electron subband approaches the Fermi surface. In this case the longitudinal Cooper-pair size drops by two-three orders of magnitude down to a few nanometers. This unconventional BCS-BEC crossover is driven by quantum-size effects rather than by tuning the fermion-fermion interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Dordrecht Editor  
  Language Wos 000289872900009 Publication Date 2010-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1874-6500;1874-6535; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the ESF-network: INSTANS. M.D.C. acknowledges support from the Alexander von Humboldt Foundation. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:89946 Serial 3359  
Permanent link to this record
 

 
Author Janssens, K.L.; Peeters, F.M. doi  openurl
  Title Monte-Carlo simulation of the coherent backscattering of electrons in a ballistic system Type A1 Journal article
  Year 1999 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst  
  Volume 25 Issue Pages 615-621  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000080373600007 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.123 Times cited Open Access  
  Notes Approved Most recent IF: 2.123; 1999 IF: 0.649  
  Call Number UA @ lucian @ c:irua:24169 Serial 2199  
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Studart, N.; Marques, G.E. doi  openurl
  Title Effects of intersubband coupling on Friedel oscillations in quasi-two-dimensional electron systems Type A1 Journal article
  Year 1999 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst  
  Volume 25 Issue Pages 185-189  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000078799200032 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.123 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.123; 1999 IF: 0.649  
  Call Number UA @ lucian @ c:irua:27034 Serial 863  
Permanent link to this record
 

 
Author Shi, J.M.; Koenraad, P.M.; van de Stadt, A.F.W.; Peeters, F.M.; Devreese, J.T.; Wolter, J.H. doi  openurl
  Title DX-center and pressure effects on electronic structure of a δ-doped quantum barrier Type A1 Journal article
  Year 1998 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst  
  Volume 23 Issue Pages 83-86  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000072338200015 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.123 Times cited Open Access  
  Notes Approved Most recent IF: 2.123; 1998 IF: 0.831  
  Call Number UA @ lucian @ c:irua:28908 Serial 759  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: